Implementation Security In
Cryptography

Lecture 11: Entering the World of Attacks

Recap

e In the last lecture
« Compact design of AES

Today

e Few more words about implementations

e Entering the world of attacks.

AES Once Again

e Well, we have seen how it is done in hardware..
e But what about software?
e A popular, extremely fast, yet terrible approach — T tables
« Used quite a lot in OpenSSL
e Not used anymore due to several cache timing attacks

e But table based secure implementations also do exist

AES T Tables |,

1 1 3) (%)
3 2 1 1 €1
1 3 2 1 %)
\1 1 3 2) \63)

e Let us consider the MixColumns operation

e |In software, each 32-bit AES column is a

uint32 variable.

Sog=2¢co D 3c; D lc, D 1y
s1=1lcy® 2c; D 3¢, B lc,
sy =1cy @ lc; @ 2c, @ 3¢,y
s3 =3¢y @D lc; @ lc, @ 2c4

AES T Tables |,

(')
—_ W DN =
W N = =

e Let us consider the MixColumns operation

(Co)
C1
%)

\3)

e In software, each 32-bit AES column is a

uint32 variable.

e SO we can store s in a uint32 variable.

 Here each s; is 8-bit, so we can simply do

concatenation to get 32-bits.

SO — 2C0 @ 3C1 @ 1C2 @ 1C3
Sl — 1C0 @ 2C1 @ 3C2 @ 1C3
52 — 1CO @ 1C1 @ 2C2 @ 3C3
S3 — 3CO @ 1C1 @ 1C2 @ 2C3

=s0O | s1 | s2 | s3

= 2%cO A 3*cl A 1*c2 » 1*c3 |
1*cO A 2*cl A 3%c2 A 1*c3 |
1*cO A 1*cl A 2*c2 A 3*c3 |
shoels) o gleetl e aleden v Aer

AES T Tables |,

1 1 3) (%) (%)
32 1 1|14 _ |5
1 32 1|]a] [

\1 1 3 2) \63) \53)

« Here each s, is 8-bit, so we can simply do
concatenation to get 32-bits.

« Now we can also rearrange the terms.
« Why this is beneficial??

s =s0O | s1 | s2 | s3

S = 2%cO A
1%*c@ 2
1 et O
3*cO A

s = (2*cO
(3*c1
(1*c2
(1*c3

sfdel o clidey)
el 0 ShAes
el o ZRde
1*cl A 1%c2

1*cO
2*cl
Sfie
1*c3

| 1*co
| 1*c1
| 2*c2
| 3*c3

A 1%c3 |
A 1%c3 |
A 3%c3 |
N 2*%c3

| 3*cO) »
| 1*c1) A
| 1*c2) »
| 2*c3)

AES T Tables |,

1 1 3) (%) (%)
32 1 1|14 _ |5
1 32 1|]a] [
13 2)\G5) %)

« Here each s, is 8-bit, so we can simply do
concatenation to get 32-bits.

« Now we can also rearrange the terms.
« Why this is beneficial??

« Observe that you can compute each
term being XORed only from a ¢;

s =s0O | s1 | s2 | s3

S = 2%cO A
1%*c@ 2
1 et O
3*cO A

s = (2*cO
(3*c1
(1*c2
(1*c3

sfdel o clidey)
el 0 ShAes
el o ZRde
1*cl A 1%c2

1*cO
2*cl
Sfie
1*c3

| 1*co
| 1*c1
| 2*c2
| 3*c3

A 1%c3 |
A 1*c3 |
A 3%c3 |
N 2*%c3

| 3*cO) »
| 1*c1) A
| 1*c2) »
| 2*c3)

AES T Tables

(2 1 1 3) () (%
3 2 1 1 € _ S1
1 3 2 1 %) S
\1 1 3 2) \63) \53)

« Why this is beneficial??

« Observe that you can compute each term
being XORed only from a ¢;

« Since ¢; is 8-bit, so we can compute all

possible 256 values and store them in. A
table.

« Same can be done for all ¢,

» One table for each

« Catch: Table lookup is much faster than a
finite field operation.

n
1

S = 2%cO A
1%*c@ 2
1 et O
3*cO A

s = (2*cO
(3*c1
(1*c2
(1*c3

1*cO
2*cl
Sfie
1*c3

sO | s1 | s2 | s3

3*c1l A 1*c2
el 0 ShAes
el o ZRde
[G RI

| 1*co
| 1*c1
| 2*c2
| 3*c3

A 1%c3 |
A 1*c3 |
A 3%c3 |
N 2*%c3

| 3*cO) »
| 1*c1) A
| 1*c2) »
| 2*c3)

s =s0O | s1 | s2 | s3

AES T Tables |,

1 1 3) (%) (%) s = 2%cO A 3%cl A 1*c2 A 1%*c3 |
C S

? g ; } Cl — Sl 1%cO A 2%cl A 3*c2 A 1*C3 |
2 2

11 3 2) <) 153 TN GORGII CHI G OGS S CO N

3*cO N 1*cl A 1*c2 N 2*c3

« Why this is beneficial??

« We denote these tables as te0, tel, s = (2%CO | 1%*cO | 1*cO | 3*c0) A
te2, and te3. (3*c1 | 2*c1 | 1*c1 | 1*c1) A
« The operation is as follows: (1*c2 | 3*c2 | 2%c2 | 1%c2)
(1*c3 | 1*c3 | 3*c3 | 2*c3)

teO[i] = 2%1 | 1%i | 1% | 3%i

te1[i] = 3*1 | 2%i | 1% | 1%i

te2[1] = 1%L | 3*i | 2% | 1%

te3[i] = 1%L | 1%i | 3% | 2*i

s = te@[cO] ~ tel[cl] ~ te2[c2] ” te3[c3]

It does not ends here...

(2 1 1 3)
3 1

2 1
1 321
1 1 3 2

e Can we do better than this?

te@[i] = 2*1 | 1% | 1*1 | 3*i
tel[1] = 3*i | 2*1 | 1*1 | 1*i
te2[1] = 1%L | 3*i1 | 2*1 | 1*i
te3[1] = 1%L | 1% | 3% | 2*i

s = te@[cO] ~ tel[cl] ~ te2[c2] ~ te3[c3]

(Co)
¢
%)

\3)

s =s0O | s1 | s2 | s3

S = 2%cO A
1%*co »
1*co 2
3*cO A

s = (2*cO
(3*c1
(1*c2
(1*c3

2feetl
2 el
1Ll
el

1*cO
Gl
B
1*c3

A 1%*c2
A 3*c2
A 2%c2

o aliyey

| 1*coO
| 1*c1
| 2*c2
| 3*c3

A 1%c3 |
A 1%c3 |
A 3%c3 |
AN 2*c3

| 3*cO) ~
| 1*c1) A
| 1*c2) A
| 2*c3)

It does not ends here...

RO
s = (2*cO | 1*cO | 1*cO | 3*co) ~
(3*c1l | 2*cl | 1*cl | 1*c1) »
(1*c2 | 3*c2 | 2*c2 | 1*c2) A
(1*c3 | 1*c3 | 3*c3 | 2*c3) =
e« Can we do better than this? R2
e Observe that: co|c1|c2|c3can be
e S[bo][s[b5]|s[b10]|S[b15] O, s[ba]|S[b9]|S[b14]|S[b3] OF
S[b8]|S[b13]|S[b2]|S[b7] S[b12]|S[b1]|S[b6]|S[b11] R3

e So we can merge subtypes and shift rows in
a table

(2*S[b0]
(3*S[b5]
(1*S[b10]
(1*S[b15]

(2*S[b4]
(3*S[b9]
(1*S[b14]
(1*S[b3]

(2*S[b8]
(3*S[b13]
(1*S[b2]
(1*S[b7]

(2*S[b12]
(3*S[b1]
(1*S[b6]
(1*S[b11]

1*S[b0O]
2*S[b5]
3*S[b10]
1*S[b15]

1*S[b4]
2*S[b9]
3*S[b14]
1*S[b3]

1*S[b8]
2%S[b13]
3%S[b2]
1*S[b7]

1*S[b12]
2*S[b1]
3*S[b6]
1*S[b11]

1*S[b0O]
1*S[b5]
2*S[b10]
3*S[b15]

1*S[b4]
1*S[b9]
2*S[b14]
3%S[b3]

1*S[b8]
1*S[b13]
2*S[b2]
3*S[b7]

1*S[b12]
1*S[b1]
2*S[b6]
3*S[b11]

3*S[bo])
1*S[b5])
1*S[b10])
2*S[b15])

3%S[b4])
1*S[b9])
1*S[b14])
2*S[b3])

3*S[b8])
1*S[b13])
1*S[b2])
2*S[b7])

3*S[b12])
1*S[b1])
1*S[b6])
2*S[b11])

It does not ends here...
 So finally

RO = tedO[bO] ~ tel[b5] ~ te2[b10] ~ te3[bi15]
R1 = te0[b4] ~ tel[b9] ~ te2[b14] ~ te3[b3]
R2 = teO[b8] ~ tel[b13] ~ te2[b2] 2 te3[b7]
R3 = te0[b12] ~ tel[bl] ~ te2[b6] ~ te3[bl1l]

It doe

e So finall
RO = teO[bO]
R1 = te0[b4]
R2 = te0@[b8]
R3 = te0[b12]

// Initialize the state, stored in s0@, s1, s2 and s3

sO :
sl :
s2 :
s3 :

// Add the first round key to the state
sO@ A= xk[0]
sl A= xk[1]
s2 A= xk[2]
s3 A= xk[3]

for i:= 1; 1 < nr; i1++ {

// This performs SubBytes + ShiftRows +

tmp0 = te0[s0>>24] A tel[s1>>16&0xff] A
tmpl = te@[s1>>24] A tel[s2>>16&0xff] A
tmp2 = te@[s2>>24] A tel[s3>>16&0xff] A
tmp3 = te0[s3>>24] A tel[s0>>16&0xff] A

sO, s1, s2, s3 = tmp0O, tmpl, tmp2, tmp3

MixColumns + AddRoundKey

te2[s2>>8&0xff]
te2[s3>>8&0xff]
te2[s0>>8&0xff]
te2[s1>>8&0xff]

A

A

A

A

te3[s3&0xff]
te3[s0&0xff]
te3[s1&0xff]
te3[s2&0xff]

A

A

A

A

uint32(src[0])<<24 | uint32(src[1])<<16 | uint32(src[2])<<8 | uint32(src[3])
uint32(src[4])<<24 | uint32(src[5])<<16 | uint32(src[6])<<8 | uint32(src[7])
uint32(src[8])<<24 | uint32(src[9])<<16 | uint32(src[10])<<8 | uint32(src[11])
uint32(src[12])<<24 | uint32(src[13])<<16 | uint32(src[14])<<8 | uint32(src[15])

xk[4*1]

xk[4*1+1]
xk[4*1+2]
xk[4*1+3]

But As We Said...

e The tables are stored in cache memory of your system.
« AES accesses this table depending on the secret key values

« An adversary, who is able to measure the time for each encryption
operation, and also using the same cache can do something so that it

can recover the secret key!!!
« Such attacks are called cache timing attacks...

Attacks due to Memory Wall

Microprocessor

N

_N\| Cache
— | Memory

A4

Main Memory

 If there is a Cache Hit If there is a Cache Miss
« Access time is less Access time is more
- Power Consumption is Power Consumption is

Timing Attacks due to Cache Memory

e Uses a spy program to determine cache behavior

Microprocessor

Cache Memory
Part of the cache memory
occupied by tables

Cache Miss

Cache Hit

Bitslicing

« Simply speaking, implement the software like hardware
e Results in constant-time crypto
 ldea: Let’s say you are running on a 32-bit machine.
e 32-bit registers
e Logical AND, OR, NOT, XOR.
 Also consider your block cipher in terms of these gates.

Bitslicing: A Simple Example

e Let us consider the first equation only.

e It can be written as follows:

and tl,
and tZ,
and t3,

xor t4,
And so on...

x1,
tl,
tl,
t2,

x4
X2
X3
t3

Y1 = T1XT2X4 + T1T324
+ 1 + Tox3xs + X223 + 3+ 14 + 1

Y2 = T1T2T4 + 1T304 + T1X3 + T1X4+
r1+ 2o+ x324 + 1

Y3 = T1T2T4 + T1X2 + T1T3%4 + T1T3+
r1 + Xxox3xa + X3

Yo = L1 + Tox3z + T + X4

Bitslicing: A Simple Example

e Let us consider the first equation only.

e It can be written as follows:

and tl,
and tZ,
and t3,

xor t4,
And so on...

x1,
tl,
tl,
t2,

x4
X2
X3
t3

Y1 = 1T2T4 + T1X3%4
+ X1 + Tox3xy + Toxs + X3 + 14 + 1

Y2 = T1XT2T4 + T1X3T4 + T1X3 + T1T4+
r1+ 2o+ x324 + 1

Y3 = 12224 + T1T2 + 12304 + T1X3+
r1 + Xxox3xa + X3

Yo = L1+ Toxz + T2 + X4

« Now, each of t1, x1, x2,... are mapped to
32 bit registers; but actually they are
processing 1-bit values

e So, what to do?

Bitslicing: A Simple Example

e Let us consider the first equation only.

e It can be written as follows:

and tl,
and tZ,
and t3,

xor t4,
And so on...

x1,
tl,
tl,
t2,

x4
X2
X3
t3

« Pack each register with independent
values and process them using the same
instruction.!!!

e Easiest case: you can encrypt 32
plaintext together

Bitslicing: A Simple Example

Easiest case: you can encrypt 32 plaintext together

You can parallelize S-Box computations for one plaintext

A 64-bit word A 64-bit bundle
A A
C h (N
beatlibeor =B h SN NhSNIEDINEh N Register 0 [BSRR h5- | ... | b3 | bZ BERIGS
0 |0 0 |#0 |50 |#O 63 |1,62 3 (52 [pl | po
b127 |b126 | - |be7 |Pes |Pes |Pes by |by” | .. | bf | bf | by | by
1 |p1 1| p1 | pl | pl 63 |1,62 3 (52 [pl | po
“ bgs |bgy | -« | b3 | by | by | by b3° |by“ | ... | b5 | b5 | by | by
5 1 |1 1 [p1 [pl |p1 63 |1,62 3 (52 | pl | po
< |bi27 |bize | -+ |Pe7 |bee |Des |Psa b3® |b3” | .. | b3 | b3 | b3 | b3
S
i
63 |1,63 63 | 1,63 | 1,63 | 1,63 3 (2 |p1 |p0
be3 |bey | - |b3” |b3” | by | bg brse brss | - |bize |Pize [Pize [Pi2e
63 | 1,63 | 1,63 | 10 62 3 (n2 |p1l |p0
bPs7 bise | - |bé7 |bés |b&2 | bes bPs7 bts7 | = |Diay |bia7 |biaz Pi27

(a) Original storage matrix (b) Bit-slice storage matrix

Side Channel Attacks

Why do Cryptographers Need Engineers?

Communication Channel Message
> E —r o | = e e e = .‘_ N > D __>

L J
A . A
. N |
@D @ L
% K, K,
0..

Alice

Message

G Bob

Mallory

Cryptographic Security: Real World

Communication Channel Message
T S — ’_ [— .> D __>

: A
K
: / Bob

Real devices leak through their physical characteristics
* Timing

Power consumption

Electromagnetic Radiation

Sound

Faults

Message

Mallory

Strong cryptographic algorithms
are only the beginning

Analysis and mitigation of physical attacks are cryptographic as
well as engineering problems

Side-Channel Attacks (SCA)

* The physical channels are correlated with the
information being processed

« Fundamental cause: power consumption is correlated
with switching of CMOS transistors (0->1, 1->0)

» Typically it is assumed that power consumption
is correlated with the Hamming Weight/
Distance.

* If some internal state is exposed, the secret key can be
recovered in seconds.

SECRET

0 1.0°4.000000 1010100131041 1 101001, 1 1| repoNENE

A7 A OO A
3 ‘ M= Multiply

SMS sM'sis'sMs sMisM's

5'SM §sMSKk 's'sisisls SMSE SM'SMS

Source: Internet

Square and Multiply Algorith

d Encryption E 9 p Y 9)

Plaintext M<n % Goal: Compufeé‘?(mod n)

Ciphertext C =M (mod n) 1. convert e to binary: k.k,.;...kikq

2. b=1;
S ¥ 3. for (i=s; >=0; i--)
4 N 4. {b=b*b (mod n);
Decryption 5. if (ki==1)
Ciphertext C 6. b=b*a(modn)
Plaintext M= C*%(mod n) 7.}
i 8. return b;

Side-Channel Attacks (SCA)

* The physical channels are correlated with the

information being processed
« Fundamental cause: power consumption is correlated
with switching of CMOS transistors (0->1, 1->0)
» Typically it is assumed that power consumption
is correlated with the Hamming Weight/

Distance.
* If some internal state is exposed, the secret key can be

recovered in seconds.

SECRET

1. 1| EXPONENT

17,0100 1

S™MSIS SM'SMS

1

010 100000010101 00101

YA A

S'SM §SMSEKE SS'SIS'S sMs smisls'sms smism's

S=Square
M= Multply

Source: Internet

,,,,,,

|
00 0 3000

1000

Source: Testbed for Side Channel analysis and security evaluation

Side-Channel Attacks (SCA)

* The physical channels are correlated with the

information being processed
« Fundamental cause: power consumption is correlated

with switching of CMOS transistors (0->1, 1->0)
 Typically it is assumed that power consumption

is correlated with the Hamming Weight/

Distance.
* If some internal state is exposed, the secret key can be

recovered in seconds.

SECRET

010 1000000170101 00101 1 12,01001 1 1 EXPONENT

AR U N A A A A | S=Square

S™MSIS SM'SMS

S'SM §SMSEKE SS'SIS'S SMS' sM'sis'sMs sMisM's

Source: Internet

|
2000 0 3000

Source: Testbed for Side Channel analysis and security evaluation

Side-Channel Vs. Classical Cryptanalysis

e Cryptanalysis: Purely mathematical

e Take example of AES

« Cryptanalysis means, you only have access to plaintext,
ciphertext — a lot of them

e You have to
e Find the key

 Or, at least, show that it is distinguishable from uniform
randomness

Side-Channel Vs. Classical Cryptanalysis

e Cryptanalysis: Purely mathematical
» Take example of RSA/ECC/PQC

« Cryptanalysis means, you only have access to plaintext,
ciphertext — a lot of them

e You have to
e Find the key

« Maybe you need to solve the underlying hard problem
in some (mathematical) way.

Side-Channel Vs. Classical Cryptanalysis

 Side-Channel Cryptanalysis: Mathematics + Physics + Statistics

e The goal is mostly to recover key

e But also signature forgery, confidentiality breach
« Ranges beyond crypto...

e Kernel information extraction

e Unprivileged access

« Neural network reverse engineering

The Root Cause

VD
T T) T) |
3 | / \ i
- / \

o ., / ' |

g - / Input a

‘ M2 —; / Output g
> 17 / T 1
/ ‘
- \ —
‘/ ” 4 " 4 J
. out

Vin 0 2 4 f 8 10 12

Time [ns)

T T Y 4 2 .
ey TR 150 1
TS, :
— |
\ M1 < 100 | | .
2 50 ,' }
i- | | |
l' “ y
OF L | \ F - .
J)
N e 7 SR 0 2 4 6 8 10 12

— Time |ns)

The Root Cause

VpD N
T T . 4 g |
3t
— /
-~ /
u— “ 4+
% ° / Input a
—O M2 = / Output q
> I /]
0 e ————
: V : A A .]
Vin o 0) 4 6 8 10 12
Time [ns)
T T Y M) |
e [T 150 1
S CI, r‘
p— |
Ai M1 < 100 | l ‘
2 50¢ ,' | }
- ' '
l‘ 1
Or L \ 1
T — SR S 0 2 V 6 x\/ 10 12

P Time [ns)

The Root Cause

What is exploited?
« The state change of a gate is proportional to the

power dissipated. v A N\
« Think about a circuit with millions of gates. ’ / 7\ /
, |
/ — Input a

 How to measure
» Power dissipation can be measured by
putting a resistor in series with VVdd or Vss /
and the true source/ground. : . r . - - s
* Roughly, 1 Ohm resistors work well for many Time [ns)
microcontrollers, but it is highly target
dependent A
» We actually measure current.
« Differential probes. R ¥ & /
N

/ Output q

Voltage | V]

* The best approach is to use a near-field 0t

H-probe an measure EM signal 0 > \J 6

» Less noisy than global power fime [ns}
measurement

-
M

10 12

The Root Cause

Energys s

What to “Measure”?

The Crypto Running on a Microcontroller/

FPGA/ASIC

« End of the day everything is CMOS!!!

« Since power consumption is proportional to
the switching activity, so we can get some
idea about the internal computation of the
crypto

* The crypto is no more black box

* In this talk we will be specifically focusing on
symmetric key algorithms

 AES

 What do we mean by attacking AES?
* Finding out it’s secret key

Looking Inside AES

State
1 byte
o P
e e e ¥ e
s10s11s14s13 ﬁ)k11lk12k13
s201 s21s24s23 k20) k21k23k23
s20 s31s34s33 k20| k31k34 k33
1. SubBvtes * Nonlinear Boolean Function
. * Finite field inversion followed by
' affine map
; * Also implemented as a table
» Source of confusion

2. ShiftRows

P4

* Linear Boolean Function

» Left circular shift of rows

¢ Source of diffusion

4. AddRoundKey

3. MixColumns

A 4

S0,0 | S0 | So2 | Soa
Stol S| 512 | $i2
520 | S21 | S22 | S23
530|531 | S32 | 532

s00

sO1

s02

s03

s10

s11[s12

s13

s20

s21

s22

s23

s20

s31

S32

S33

D

a constant matrix in GF(28)

y V. %
W o -
-—-— N W
—_— N W -
N -
I |
1
IS

Il
1
I

* Linear Boolean Function [¢ Tg |

* Multiplies each column by

e Source of diffusion

k0O

kO1

k02

kO3

k10

k11

k12

k13

k20

k21k22

k23

k20

k31k32

k33

* Linear Boolean Function
» XOR the state with a round key

Through the Looking Glass

There can be two kinds of power analysis attacks:

« Simple power analysis (SPA): Exploits the operation dependence of power consumption
« Remember the RSA example from the beginning...

- Differential Power Analysis (DPA): Exploits the data dependence of power consumption
» We well see now for AES
* Fact: there is no secret dependent operation in AES, everything is uniform.

SECRET
01010000001010100101 1101001 1 1/|pvpoNENT

l ‘ | R | I S=Square
- . ‘ ' ! M= Multiply
5'sM gsMss 's'sisisls SMS SM'SIS'SMS SMISM'S SMSKE SM'SMS

il JMN I I I I A, A oy J,A_V‘WV"‘W\‘V'\‘.\('M YW AAAAteAN
,t"
\ W
00] ,.f'“"
& 000 | ’ A "/‘
% 1 J‘ wv'
l

2 oots

\J !
0010

0005

Samples -> (103)

Differential Power Analysis

« Power Trace: A set of power consumptions across a cryptographic process
- 1 millisecond operation sampled at 5MHz yield a trace with 5000 points.

- Leakage Model: Hypothetical model relating the leakage with the internal states of the
target algorithm.

* For AES the internal state is a 128-bit value.

- Hamming Weight Model: The power consumption is proportional to the Hamming
weight (count of 1’s) of the state.

- Hamming Distance Model: The power consumption is proportional to the Hamming
distance between the state in two consecutive clock cycles. — FPGA/ASICs

- More complex models are possible...

- Used to simulate leakage and also in some attacks.

Differential Power Analysis

Plain Text
256 . .
AddRoundKey « Common hardware implementation of a

256 Cipher Key blOCk C|pher

e 256
MUX £ « We consider the state of the circuit at
. . time instance t — you can consider it as
SubBytes] one time point in the x-axis of the trace.
{
ShiftRows] - - Let this state be v,
0 Inner—pipelining
BUFFER1 [Cock « Hamming weight is number of 1's in v,.
¥
MixColumns | « Hamming distance is HW(v, ® v,_)..
AddRoundKey
“n% e Whv?
\/ 256 RoundKey y .
BUFFER2
| Addkey| enable
(\R 256
/256
Last_round
BUFFER B e
2564 Cipher Text

Differential Power Analysis

« Power Trace: A set of power consumptions across a cryptographic process
- 1 millisecond operation sampled at 5MHz yield a trace with 5000 points.

Trace ;0

0.030

0025
[V}
@ 0020
.
0
® 05

000

0.005

0) 10 15 20
Samples -> (103)

Differential Power Analysis: The Idea

S HW(s) | Target bit (LSB)
0000 0 0
0001 1 1
0010 1 0
0011 2 1
0100 1 0
0101 2 1
0110 2 0
0111 3 1
1000 1 0
1001 2 1
1010 2 0
1011 3 1
1100 2 0
1101 3 1
1110 3 0
1111 4 1

« Assume power leakage follows Hamming Weight.

 Divide the HW(s) into two bins:
* 0 bin: when LSB is O
* 1 bin: when LSB is 1

Differential Power Analysis: The Idea

S HW(s) | Target bit (LSB)
0000 0 0
0001 1 1
0010 1 0
0011 2 1
0100 1 0
0101 2 1
0110 2 0
0111 3 1
1000 1 0
1001 2 1
1010 2 0
1011 3 1
1100 2 0
1101 3 1
1110 3 0
1111 4 1

« Assume power leakage follows Hamming Weight.

 Divide the HW(s) into two bins:
* 0 bin: when LSB is O
* 1 bin: when LSB is 1

+ Difference-of-Mean (DoM)=20/8-12/8=1

When the Partitioning is Random

DOM

Plotting DOM when partitioned based on uncorrelated bit

0.05
-0.05 +

01}

1
600

1
650

1 1 | 1 1 |
700 750 800 850 900 950
No of samples

« Parititioning done by bits simulated using rand
function in C.

* Observe the DoM is close to 0, as expected!

* Note: Instead of computing the difference, we
can use some statistical hypothesis test, such
as t-test.

* The hypothesis will be — whether the two
trace distributions are the same or different

 For a random uncorrelated bit, the two
distributions are the same.

« Moral of the story: If the bin partitioning is based on a bit from the actual state, there will be

significant difference in the mean values of the bins. This is because, the traces are data
dependent.

Attacking AES

A very very important point

* We haven't seen AES key schedule in detail — but it is has somewhat
similar operations as the rounds — has SBoxes, shifts XORs etc.

* Important: key schedule is invertible

 That is, if you recover one round key , you can recover all, and the
master key

Attacking AES

1. Measurement:
» Make power consumption measurement of about 1000 AES operations, 100000 data points/trace,

- Save (Ciphertext;, trace i)
2. Attack:
» Target an S-Box in the last round (say the j-th S-Box)
A. Guess a key for an S-box of last round (8 bit key, so total 256 guesses possible)
B. Partially decrypt one byte of each ciphertext with the guessed key till the input of the last
round S-Box. That is compute: S; = S_I(Cj D k]fg)

C. Divide the traces into 2 groups based on the LSB of S]

D. Calculate the average trace of each group

E. Calculate the difference of two average traces

F. Correct key guess — spikes in the differential curve
» Repeat A-F for other S-boxes

Attacking AES — -

0.030
005 &
9 000 §
%

® o015 L
0010 £
0005 £

o 5w sy
Samples -> (10%3)
CT[O] T[O][O] T[O][1] T[O][m]

o [[[

I N IO I IO

CT[n] T[n][O] T[n][1] T[n][m]

Attacking AES

Distinguishable
/‘ Spikes
— X w
=
g 0.
o
5 0.1
@)
2500 ~
2000

“Key =77
1680 Key =12

500
Time (us) 0 Key =113

Key =13

Key Guess

SBOX - 11 BIT —8 TRACE COUNT = 15,000, FPGA implementation

Attacking AES

* DPA selection function: D(C,b,k9) is defined as computing the value of the
- pbth output bit, depending upon
« C: Ciphertext
* k9 is the guessed key for the S-Box
. In the attack, D = S_I(CJ- &b k]fg)

* |f k9 is a wrong guess then b is correctly evaluated only for half of the ciphertexts
(randomly).

* Thus for large number of points, the difference between average traces is close
to0

e In other words, distribution of both the bins will be the same
 But if k9is a correct guess, then b is correctly evaluated for all the ciphertexts.

Principle: If K, is wrongly guessed, D behaves like a random guess.

Thus for a large number of sample points, A[1..k] tends to zero. But
if its correct, the differential will be non-zero and show spikes when
D is correlated with the value being processed.

Attacking AES

Add
Round

. m . K‘Jr‘
1

Sub
Bytes
and
STHC1I0 P K" Shift
Rows

Cl0D K’

Guess k* ‘

D(C10,b = 0,K10) = ST (C10 ® K*) |, _,

Attacking AES

- Differential Trace: It is a m sample trace denoted as A, where,

Y, D(Cb KYTHIT X (1= D(C, b, K) T[]
> D(C, b, K,) > (1= D(C,, b, K,))

Aplj] =

- Note: C; is a particular byte of the i-th ciphertext.

Attacking AES

« Why does the attack work?

* It's not only the data dependency. But it also depends on the mathematics of AES

* DPA selection function: D(C,b,k9) is defined as computing the value of the
« bth output bit, depending upon
* C: Ciphertext
* k9 is the guessed key for the S-Box
. In the attack, D = S_l(Cj &>, k]fg)
* If k9 is a wrong guess then b is correctly evaluated only for half of the ciphertexts (randomly).
* Thus for large number of points, the difference between average traces is close to 0
e In other words, distribution of both the bins will be the same
» But if k9is a correct guess, then b is correctly evaluated for all the ciphertexts.

* Note: The non-linearity of the S-Boxes play an important role here.

Principle: If K, is wrongly guessed, D behaves like a random guess.

Thus for a large number of sample points, A[1..k] tends to zero. But
if its correct, the differential will be non-zero and show spikes when
D is correlated with the value being processed.

. Plaintext or d,
Atta C kl n g A E S Ciphertext d,
: Key Hypotheses
d D I\'I l\‘g - I\‘}\'

\ ./

S-Box
. Ui 12|~ T |YV1K
Hypothetical
U21| V22|~ 7 V2K
S—-Box target bit values 1 :
I I
UD1|vp2| ~ T|VD.K

5)!:;’1‘/ \" ;r.'n'i;.'t/ \A‘n.v.-_g\

U 1 1 0
Py P1a K Pk . - .
0 : l"h . Classify power traces into
P2, P2, Pox | |Pox . . .
| | "I" "I}‘ bins based on intermediate values
| I I |
0 1 1 0
PN PN p'\".}\' p_\"_h’

I‘L ﬂ| /’L H
A A«

Correct key = {k; : dpa_biasy, = Il}l;{_,}_ (<‘1;_)(1_biu.q.;)}

-] dpa_bias, dpa_biasg

Attacking AES: Attack Complexity

 What is the attack complexity

« Say you are given n number of traces

* How much further computation you need to perform?

Attacking AES: Attack Complexity

« Observe: We are targeting the last round of AES and attacking each S-Box separately.
* Divide and Conquer
 Attack complexity: always 28

« Trace complexity: depends

« Observe: The attack don’t need plaintext knowledge

Leakage Models

Measurement _
Trace Post processing

rigger
Ciphertext

| shutterstock.com - 300266366

Plaintext

Differential Power Analysis

* Power Trace: A set of power consumptions across a cryptographic process
- 1 millisecond operation sampled at 5MHz yield a trace with 5000 points.
- Measurement:
 Usually requires to adhere a signal bandwidth and frequency.

- We do quite high frequency sampling — e.g. for a 65 Mhz microcontroller or 150 Mhz
FPGA implementation, we do sampling at 5 GS/sec.

- Number of samples is an important point. More samples results in better attack
- Trigger: An important constraint
- Without reliable trigger, the traces will be misaligned. —attack will be difficult
 Most of the practical implementations does not provide a very reliable trigger
- So, some realignment of traces are needed
- Today, DL algorithms are great for this purpose — does automatic realignment.

Attacking AES

1. Measurement:
» Make power consumption measurement of about 1000 AES operations, 100000 data points/trace,

- Save (Ciphertext;, trace i)
2. Attack:
» Target an S-Box in the last round (say the j-th S-Box)
A. Guess a key for an S-box of last round (8 bit key, so total 256 guesses possible)
B. Partially decrypt one byte of each ciphertext with the guessed key till the input of the last
round S-Box. That is compute: S; = S_I(Cj D k]fg)

C. Divide the traces into 2 groups based on the LSB of S]

D. Calculate the average trace of each group

E. Calculate the difference of two average traces

F. Correct key guess — spikes in the differential curve
» Repeat A-F for other S-boxes

Differential Power Analysis

« Power Trace: A set of power consumptions across a cryptographic process
- 1 millisecond operation sampled at 5MHz yield a trace with 5000 points.

- Leakage Model: Hypothetical model relating the leakage with the internal states of the
target algorithm.

* For AES the internal state is a 128-bit value.

- Hamming Weight Model: The power consumption is proportional to the Hamming
weight (count of 1’s) of the state.

- Hamming Distance Model: The power consumption is proportional to the Hamming
distance between the state in two consecutive clock cycles. — FPGA/ASICs

- More complex models are possible...

- Used to simulate leakage and also in some attacks.

Differential Power Analysis

Plain Text
256 . .
AddRoundKey « Common hardware implementation of a block

cipher

256 256 Cipher Key
& 256
» We consider the state of the circuit at time
et e instance t — you can consider it as one time
- e point in the x-axis of the trace.
SubBytes }
! « Let this state be v,
ShiftRows] e
0 Inner-pipelining « Hamming weight is number of 1's in v,.
BUFFER | _ clock : : :
; « Hamming distance is HW(v, @ v,_;)..
MixColumns } « Why?

AddRoundK . .
A - After all power consumption is a result of
N 256 i transition v,_; — v,

BUFFER2 . . .
| Addkey| enable « So, HW is relatively inaccurate, but works
i well for software
(5 756 * Registers often start from a specific
Last_round initialisation value.
BUFFER B e
2564 Cipher Text

Differential Power Analysis

Setup Power profile at each +ve clock edge, Initial Key: 0x8080_8080_8080_8080_8080

4.6e-05
LFSR l I l I I ; Po:/ver —
r- --- - ---"-"-""-""-""-"=-"-""=--"°-"°="°=-"°="°-~"°=~"=~"°~"=T°~T°=~T=¥"/"=""7>/"=”"°~°"=°=°° --T-T - - = "= --"=-"°=-"=-"°=-"=-°=-°=-°=-= =7 - e | H
! : 4.4e-05
; : A 42005 pe
1 I [
' st80 5162 st51 st38 stl3 st0 2
! ! [}
3 4e-05
! Ll | iy > - - 1Ll P - | §
>
! I 5
____________ e Ml R s e D Bt sl R Mt R S 3805
®
o
S 36005
- - - S
e 34605\
vV V v Y VYV YV Y V.V Y Y VY VvV ¥ 3
[} i :
E: 3.20-05 e -
Nonlinear Boolean Function
TN 1 S TR RS .
Keystream 5.86.05 i i) i \ \ \
0 10 20 30 40 50 60 70 80
Plaintext Ciphenex[No. of clocks ->

Linear Feedback Shift Register Actual Trace from an FPGA

Differential Power Analysis

HD profile at each +ve clock edge, Inifial Key: 0x8080_8080_8080_8080_8080 Hamming Weight profile at each +ve clock edge, Initial Key: 0x8080_8080_8080_8080_8080
50 T T 45 T
Hamming Distance —+— Hamming Weight —+—
ba
2 40 !
45 H- /
/)—H—-I—(/H—l-#
Setup Power profile at each +ve clock edge, Initial Key: 0x8080_8080_8080_8080_8080 ," /.H
4.66-05 T = zH_H*\ /+ 35 J
ower —+— \
1’_\1’ +\'j /f
4.4e-05 A +t 40 #¥ ¥ Y
(RN A TN / A &
% 4.26-05 § f £ 3 /
ﬂ NIARATARUL /- : N
§ 4e-05 ¥ ¥ 0 3 F 3 -
7 V 2 4 £
g A A £ F z e
§ 38005 ¥ tit E H H - £ 25 -
2 vy \/ v £ F / £ +HH+
~ o H+ '{ o} f/
5 g I [. ?‘#\ H
=4 3.6e-05 ‘kq-/ ’, f
PR : r
; 3.4e-05 ¥ ;{ 20 U
P -
?, 3.2e-05 ?(/
o \ / V ; f/ /'H-f- +'_/++
3e-05 25 / 15 /
L\z 4 /”T
28005 0 10 2‘0 30 40 50 60 7‘0 80 fJ F
No. of clocks -> f{ ‘H(
20 10
0 10 20 30 40 50 60 70 80 0 10 20 30 40 50 60 70 80
Actual Trace from . No. of clocks > No. of clocks ->

Actual Trace from an FPGA

Why do Gates Leak?

a2 | b | y | Enemy
00 090 00 Bea

 Consider an AND gate y = ab

00 01 00 Eo-0 _ -

‘ « 4 different energy levels due to transition
020 120 00 Eo-o E E E E
0-0 11 00 Eo-a of the gate 0-0" Z0-1> 10" ~1-1
01 090 090 Eg.o « We estimate E(g = 0),and E(g = 1)
051 091 0>1 Eo-s which are the average energy levels
01 190 090 Egu when g = 0, and g = 1, respectively.
01 191 091 Eo. 9,0+ 3E, g
120 00 0-0 Eo-o * E(q =0)= 12
10 01 00 Eo..

cE(g=1) =

4
*SoE(g=0)#E(@=1)

Make Some Noise

Measurement Noise

- Importance of high-quality measurement AES-128 Encryption with same
plaintext and key, but resulting in

different power traces.

» Noise increases the required trace count.

0.006

* These fluctuations are due to electrical ;
noise, caused due to power supply, i
clock generator, conduction and
radiation emissions from the
components

—-0.006

—0.008

-0.010'

Simple Power Model. Lett denote the time, and N (t) be a normal distributed
random wvariable which represents the noise components. Let f(g,t) denote the
power consumption of gate g at the time t. Then a simplified power model for
the power consumption is the function

P(t) =Y f(g.t) + N(t)

Algorithmic Noise

« Algorithmic or switching noise occurs

., Ngorithmic because of contributions of logic cells
— to the power consumption, which are
| ete s not under attack.

///' Signal
- Component » The power trace corresponds to the

total power consumption of the circuit.

Shift Row

* However, in the attack we target only a
Mis Colurn small part (see black circle in fig.) to
reveal a portion of the key.

» » The power consumption from all the
ey’ other parts (see blue shaded portion in
fig.) form the algorithmic noise.

» This would be more in a parallel
implementation, compared to a

Fortunately, our statistical attack can handle both e ! :
serialized implementation.

Statistical Analysis of Power Traces

Fact: For fixed operation and fixed value, the power

consumption is fixed. But there will be some additive 30 Trace Plot
noise. \ -
* Fortunately, this noise is Gaussian. ,‘.,'r" 1 =
 Let us assume that the mean is ¢ and variance is o’ ALY '; / _ t 003
» Noise mainly results in the variance... NIAY I 002
» Recall: The gaussian probability distribution function _ '-2 T\ I 001
N2 . - . : ‘ . = 7’__-" D 00

I S P AN

f(.X) — € ? x€eR e SN " ¢

oY/ 2r - 490400 609 cml‘ —— ,
" 120Q400)
X ~ N(u, o)

If u =0, o =1, we call it a standard normal
distribution.

« The CDF of standard normal is denoted as ¢(x).
D

Statistical Analysis of Power Traces

* Recall: Sampling distribution

« An unbiased estimator for u is X — the sample mean Al

. An unbiased estimator for 62 is s> — the sample t 005
variance (with n-1 correction factor, of course) » ,.;"' [' 4

« Unbiased estimator: The expected value of the YA A [003
estimator is equal to the true value of the parameter; N .‘ I 002
eg. EX)=u ” R , .

~ \"3? - /.h
" 120G400

_ _ _ _ _ 37
g
LM
eI N
At M .
J
(o]
| e
)
(D) S :
ol __m
— -
—
an - 7
°
N
2 - i
=
(qV]
Ann
=} S e a 3 =4 8 S =
ﬁ =] (=] (=] o W 0_ 0_ O_ 0_
S <- (A} 13maog
-—
®
e
@p) .

Statistical Analysis of Power Traces

e A point in the power trace is represented as: Simple Power Model. Lett denote the time, and N (t) be a normal distributed
) random variable which represents the noise components. Let f(g,t) denote the

. P(t) — Z f(g, t) + ./V(,M, O, Z) power consumption of gate g at the time t. Then a simplified power model for
8

the power consumption is the function

« POI (point of interest) in the trace: The point(s) P(t) = zg:f(g’t) +N(t)

in the trace which are the best for distinguishing
the correct key from the wrong one. Mean Fit results: mu = 004157564, std = 0.00006742

0.006

0.004

0.002

0.000

- —0.002

-0.004

—-0.006

-0.008

~0.010!

3 -2 -1 0 1 2)
Time (5) > le-7 / .

Histogram of a point in power trace for same pt and key

Sampling Distribution and Estimation of Parameters

« A point in the power trace is represented as:

(P =) f@. 0+ N (p,0,0)
8

» The question is, how does it affect the attacks??
* You cannot determine the exact HW/HD
* How to manage this noise??
* By modelling it
« Taking mean is a good idea as it is done for DoM

- Sampling distribution:
 How do we estimate i, 0?

» We can only access some samples from the true distribution and therefore we can only compute the
2

sample mean, variance X, §
* They are indeed unbiased estimators.
» But then, there are a few “statistical” points..

Sampling Distribution and Estimation of Parameters

« Sampling distribution:

 How do we estimate 1, 6?

» We can only access some samples from the true distribution and therefore we can only compute the

sample mean, variance X, 52

* They are indeed unbiased estimators.
» But then, there are a few “statistical’ points..

« Each of X, s? has their own distribution... the sampling distributions

Sampling Distribution and Estimation of Parameters

« Sampling distribution:

» Let us consider the sample mean X as a random variable
* Note that the population is normally distributed.

» It can be shown that X ~ A/ (u, G/\/Z)
* You can prove it !l — try at home

- Central Limit Theorem: Let X, X,, ---X, be independent and identically distributed random variables
with E(X) = u < 00, and variance 0 < 6> < c0. Then:

lim Pr[Z, < x] = ¢(x),Vx € R

n—aoo

" \/;0 \/EG
This means, whatever be the population’s distribution, the sample mean will approximately follow the normal

distributions for sufficiently large number of sample (n > 30, typically).

X+ X+ X, — _ .
. Law of large numbers: lim — u, that is X is unbiased estimator.
n— 00 n

Sampling Distribution and Estimation of Parameters

« Sampling distribution:
* So, the more traces you take, the average becomes closer to the actual mean.

« That means, if you have noise with u4 = const, with more traces you can significantly reduce its impact.
* But, how do you know that how many traces take you closest to the mean???

Hypothesis Testing

» Confidence Interval
 Determines, how close a certain parameter estimate is to its actual value

« When we say that we have a .99 confidence interval for yt, actual u lies in that interval, and that happens

99% of the time you calculate X and the interval.
e How do we find out these intervals?
 We shall see soon..

* Hypothesis Testing
» We define a hypothesis and test whether it is true or not depending on the samples

« Suppose we hypothesize that 4 = y,,
- You set a null hypothesis: H, : y = u,
- You set an alternative hypothesis: H, : u # u,
* Two hypotheses must be exclusive.
- It can be something else as well, such as Hy : y; # p,

X_
£ e 40,1

o

. Normal to Standard Normal: If X ~ /4 (u, c) then Z =

Standard Normal Distribution

Séet A: Transform to Standard Normal Distnbution

" « Let us define an as an interval [—Za/z, Za/z]
-PZ<Z)=¢Z,)=a

g 0 .- | - Also, we canseethat: Z, = —Z,_,

& 04 | » The probability that a randomly sampled value
§ 0 L= | of Z will lie in this interval is 1 — o —

) a2 a2 P(-Z,<Z<Z,)=1-a,

» The normal distribution tables provide
numerically calculated values for ¢(Z,) for

different o

Confidence Interval for u

X ~ N (u,0/A/n)
— 7= (X- -
0

e Therefore,

s P(Za/z < (X - 1) 'g = Zl—a/z)
o — g
=P(ZZaj2 = X —) = =2Z1-q72)
=P(X ——=Z <u<X-—Z
= (—\/ﬁ 1—a/2—/1— _\/7—1 a/2)-
* Using, Zy/2 = —Z1-q/2, thus we continue:
=P(X —=Z1_qp SUS K +=Z1gp).

+ Given X ~ N (u, 6/\/n)

» We need to compute “how good is the estimate

of u for a given number of samples (traces) n”

If we can estimate u well, then we actually
average out the noise and get close to the
actual power model (HW/HD/ or something
else).
Overall, we need to compute a confidence
interval of 4, based on the sample mean X.
Informally, that means, we do not know the
exact value of u, but we can say (based on)_(),
what range it lies.

— o — o

[X — —Zl_%,X + —Zl_%] is the (1 — a)

n n

confidence interval for p.

» o is called the error probability

Confidence Interval for u

« Overall, x4 lies in the interval

—~ O — O .
[X — —Zl_%, X+ —Zl_%] with
n n

probability 1 — a
- Say 1 — a = 0.99, then it means that if you

take say 100 sets of n-samples, y will lie in
the aforementioned range 99 times.

* It is the “confidence” on the interval finding
mechanism, not in the found interval.

Hypothesis Test

« Suppose, we want to test if 4 = p,,
- null hypothesis: H, : u = p,
- alternative hypothesis: H, : yu #

- 1 is estimated from the sample mean X

* We check
« If | X — pg| is greater than some predefined constant ¢, we reject Hy, : u = p.
- Else, we accept Hy : p = p

» False positive (Type | error):
» The null hypothesis is correct but got rejected;

« P(|X — py| > ¢) = a —is therefore called the error probability and 1 — « is the level of

confidence.
» False negative (Type Il error): The null hypothesis is wrong but got accepted.

Estimating the Number of Traces to Estimate u

- Suppose, we want to estimate the mean with precision ¢ = 0.01

P(| X — pol >c¢) =a,

PUX —pol > = P(IX = ol Z > cE) = P (121 > L) = 2P(2>) =@

=> .P(Z>cﬁ) o

o) =322 = haz

o

2
. =9 72
« Finally, "= 2 Zl—a/Z

Estimating the Number of Traces for DoM

- Suppose, X ~ N (uy, 0), Y ~ N (uy,) — let us assume the variance is the
same. Let us also assume that we have n traces.

— — n—+n
.X—YN,/,/(//tX—ﬂy,O- 2
n
X— V- (uy —
/ = Uix = #y) is the corresponding standard normal variable.

. 2
o} -
n

Estimating the Number of Traces for DoM

- Confidence interval for (yy — py) for known o:

P(Za/z S Z S Zl_a/zg} T
[X_T/_ Zl_a/z,/?_?'i'

,—n/z ,—n/z Zl—a/z]

« Null Hypothesis: (yy — py) = 0, Alternate Hypothesis: (yy — py) # 0

X— 7 — (uy —
We test if Z = Uix = #y) is in the critical region.

 Therefore,

Estimating the Number of Traces for DoM

Estimating the Number of Traces for DoM

DOM: Normal Distribution Fit DOM: Transform to Standard Normal Distnbution

l’ o
0.8+ o
0.8 1
0
- ’
X 0= Y)
2 0 B
= A 0.3
5 -
- -
0.3
0.114
IR
. |." d
_." Vv -:; '“l' - ~
7 ; | 2 3

Estimating the Number of Traces for DoM

With around 4296 traces, with equal proportions going to Set X and Y,
we have the following observations:
o= 0.07.We set ¢ = 0.01. For a confidenceof (1 —a) = 095 = a =

OOS = Zl—(l/z — ZO.975 —_ 196
2 ,
Thus, estimated number of traces=2(0'07) 1.96% = 377. ‘

(0.01)4

Estimating the Number of Traces for DoM

14 : : , , l | | |
1.2f,

A

I

81.0 ‘.’*_.__,-.-0-0—0—0—0-0—0-4_
=)

(G 0.

Q0

n

Ahe

Q0

o

ol

a

"% 2 4 ; 8 10 12 14 16 18

trace# (*1000) ->

Estimating the Number of Traces for DoM

Difference of Mean

0.4
0.4
0.3 0.3
= 0.2 0.2 =
0.1 1 | - 0.1
0.0
- 0.0

0 2000 4000 6000 8000 10000 12000 14000
Sample Number

Simulating the Power Traces

Let NSample denote the number of randomly chosen plaintexts to be encrypted using
wlog. the rolled AES cipher.

In such an architecture, a register is updated by the output of the AES round every
encryption.

The power trace is stored in the array sample[NSample][NPoint], where NPoint is
corresponding to the power consumption after each round of encryption.

For each power trace, we also store the corresponding ciphertexts in the array
Ciphertext[NSample]

We simulate the power traces by using the power model (Hamming weight or
Hamming Distance) on the state of the register before the encryption, then followed
by that after initial key addition, then after each of the 9 rounds, and finally the cipher
state.

Thus NPoint is 12 and we choose NSample as 8000.

Algorithm for Performlng DPA

Input: sample[NSample][NPoint],Ciphertext[NSample]
Output: biasKey[NKey], blaSIndeX[NKey]

1 for (cipher = 0; cipher < NCipher; cipher++) do
partialCipher = inverseSBox|[cipher & key]

2
3 if (partialCipher & 1) then

4 for (j = 0; j < NPoint; j++) do

5 sumBin1[j] += sample[cipher][j]
6 countBinl += freqSample[cipher]
7 end

8 end

9 else

10 for (j = 0; j < NPoint; j++) do

L1 sumBin0[j] += sample[cipher][j]
12 countBin0 += freqSample[cipher]
13 end

14 end

15 end

te bias = 0

17 for (j = 0; j < NPoint; j++) do

18 meanDiff[j] = sumBin0[j]/countBin0 - sumBin1[j]/countBinl
) if (bias < abs(meanDiff[j])) then

po bias = abs(meanDiff[j])

p1 index = j

P2 end

b3 biasKey[key] = bias
P4 biasIndex[key] = index
s end

14

1 ‘\\\

\
U 1.oji -0 -0-0-0-0-0-0-9-1
(0] ‘\\\ ‘-—0’**
2 \(0‘./
08 X
Ko} ;}i\l
lnos N <;§:E'_:gfr~. Fopogoroece-e-a-and
Q ’ N T LR P L S N

=4THE R gt s ot

Q0 SUISE R 5 00 o o S e e
< 04 =
ok
a R

:1 é é fO 12
trace# (*1000) ->

DPA bias balues

:1 I6 ‘8 fﬂ 1I2
trace# (*1000) ->

DPA on first key byte of
10th Round of AES
Power is Simulated by
Hamming Weight of the
Registers after each
Round

Power is Simulated by
Hamming Weight of the
Registers after each
Round,with superimposed
Gaussian Noise.

DOM and Power Model

« The above attack was demonstrated using Hamming Weight Power
Model.

« However, it can be easily adapted for a Hamming Distance power
model.

« Then the classification of the power traces would be based on the change of
transitions of the target bit across two successive clock cycles.

e Rest of Attack is same.

Stochastic Power Models

« The DoM technique for DPA is non-profiled.

« On the contrary, there could be another kind of side channel attacks
which fall into the category of profiled attacks.

o In profiled attacks, one needs to have access to a pair of identical
devices:
« Target: limited control and running cipher with fixed key.
« Profiler: full knowledge and control of the input and keys.

 Profiling can help to stochastically learn the power model more
accurately.

An Example of Such a Model
« Consider, a target byte say in the last AES round.
. P((x.K)) = by + =2, b (g, (9 (x. k))
. Here ¢p(x, k) = S~ (x @ k),
X, k are the portions of the cipher and the portion of the key guessed in the last round
. S~! stands for Inverse Sub Bytes (or inverse of the last round S-Box)
. g extracts the i’ bit of the state ¢(x, k).

« In the profiling phase, we keep the deterministic part defined by ¢(x, k)
constant.

« However, because of noise we have to solve an over-defined system of
equations to compute the values of the b;s.

Coefficient bg varying with time t.

22004_ 1/results/bit8.out’ ———

— 4 different keys used.
HEEVEIEEE | | The deviation of the co-

efficient with time shows
that Hamming Distance is
not the best power model.
However, we need a profiling
step.

T
'../..Jaes__
'../..Jaes__
'../..Jaes__
‘... Jaes__

In this case, 2000
equations were solved
(ie experiments were
done with 2000 values of

-2 L 1
6000 6100 6200

X)

Ref: Werner Schindler, Kerstin Lemke, Christof Paar, A Stochastic Model for Differential Side
Channel Cryptanalysis, CHES 2005.

Correlation Power Attack (CPA)

 Like DoM based DPA, CPA also relies on targeting an intermediate
computation, typically the input or output of an S-Box.

e These input values are computed from a known value, say the
ciphertext and a portion of the key, which is guessed.

« The power model is then subsequently applied to develop a
hypothetical power trace of the device for a given input to the cipher.

« These hypothetical power values are then stored in a matrix for
several inputs and can be indexed by the known value of the
ciphertext and the guessed key byte.

e This matrix is denoted as H, the hypothetical power matrix.

Correlation Power Attack (CPA)-Contd.

e The attacker also observes the actual power traces, and stores them in
a matrix for several inputs.

e The actual power values can be indexed by the known value of the
ciphertext and the time instance when the power value was observed.

e This matrix is denoted by T, the real power matrix.

It may be observed that one of the columns of the matrix H
corresponds to the correct key k*.

o CPA tries to compute the similarity between the columns of the
matrix H and the columns of the matrix T, to distinguish k* from rest:
similarity computed by Pearson’s Correlation, usually.

Computing Correlation Coefficient for
Simulated Power Traces for AES

« Like before, we simulate the power profile for the iterative AES, this
time by using Hamming Distance power model applied on the state
registers updated after each round.

e The real power matrix is stored in the array trace[NSample][NPoint]
o NSample: Number of Power Traces acquired

« NPoint: Time instances for which the power values are observed. Here NPoint
is 12.

Correlation Matrix

NPoint

NSample
NKey

NSample

NKey NPoint

Somele(h Powerli]|k| — meanH{[i])(trace [J] |k| — meanTracelj])

Clil]j] =

2 2
Zsz%ample(hPower[i] [k] - meanH[i]) Zsz‘%ample<trace[j] [k] — meanTrace [J])

Computing the Correlation Matrix

« Actual Power values for all the NSample encryptions are stored in the
array trace[NSample][NPoint].

« However, reflect as we are calculating hypothetical power using HD, the trick
which we applied before for storing the traces compactly will not work.

« Attacker first scans each column of this array and computes the average, and
stores in meanTrace[NPoint].

e Likewise, the hypothetical power is stored in the array
hPower[NSample][NKey].

o Attacker scans each column and stores in the array meanH[NKey]

Correlation Matrix

NPoint

NSample
NKey

NSample

NKey NPoint

Somele(h Powerli]|k| — meanH{[i])(trace [J] |k| — meanTracelj])

Clil]j] =

2 2
Zsz%ample(hPower[i] [k] - meanH[i]) Zsz‘%ample<trace[j] [k] — meanTrace [J])

Experimental Results on Simulated Traces

0.30 T T T T 0.25

|
A o020
1 1

(2

lues

DPA bias balues ->
DPA bioas ba
%

80 100

20 80 100 ’ 20

m 50 m 50
trace# (*200) -> trace# (*200) ->

CPA on first key byte of 10th Round of Power is Simulated by Hamming
AES Distance of the Registers after
Power is Simulated by Hamming each Round, with superimposed
Distance of the Registers after each Gaussian Noise.

Round

Plaintext or
Ciphertext

Summary of Correlation
s Power Analysis

Hypothetical
Intermediate values
Power Model
(Hamming Weight/Hamming Distance/Toggle Count)
v | Yy
Hypothetical power P12 -
consumption values computed ma - Power traces captured
from the power model \ [~ from the experimental setup
1
Ppa|— ‘|pl):1]

Correlation between hypothetical power
consumption values and power traces
from the experimental setup

D
3 (hay—h)(pay—py)
i

correct key = {k =, "l.&f("k_;)}

15557

“ n D
¥ (haxhal- 3 (pay—gs)°
V& =)

Metrics for SCA

 In order to evaluate the attacks and also to compare the crypto-
implementations wrt. the SCAs we need quantifiable metrics.

e Useful Metrics:

o Success Rate of a SCA adversary
o Guessing Entropy of an Adversary

Success Rate of an Adversary

« SCA works as a divide and conquer strategy, where the key space is divided into
several equivalent classes.

« The attack normally does not distinguish between keys which belong to the
same class or partition.

« We can formalize the cryptographic implementation as E¢, where K is the key
space.

e The adversary assumes a leakage model, denoted by L

e The leakage model provides some information about the key or some other desirable
information.

. The adversary is an efficient algorithm denoted by AEK’L: bounded by time
complexity, 7, memory complexity, m, and g queries.

Formal Definition of Success Rate

« The leakage exploited by the adversary, maps a key k € K, to a set,
within which it cannot distinguish.

« We define these partitions by .S, and the mapping by a function vy, st.
s=vy(k), ke K.

S| < |K|.

. Typically,
« The objective of the attack is to determine the class s to which a target k
belongs with non-negligible probability.

« As an analogy, consider the Hamming Weight class, which divides the key
space into equivalence classes or partitions.

Formal Definition of Success Rate

« As an analogy, consider the Hamming Weight class, which divides the
key space into equivalence classes or partitions.

e The output of the adversary is based on the ciphertexts (black-box
information) and the leakage (side channel information).

« The output is a guess-vector, which are the key classes sorted in terms
of descending order of being a likely candidate.

 Thus we can define a order-o (0 < | S|) adversary when the
adversary produces the guessing-vector as & = [g¢, &, ***» &,]

Formal Definition of Success Rate

© 0 N O O bk W N+

Input: K, L, Ek
Output: 0 (failure), 1 (success)

kerp K
s = (k)
g = [017 e 790] — AEk,L
if s¢ g then
return 0
end
else
return 1
end

The experiment is a successif s € g

Succy

= Pr[EprEK’L = 1]

K,L(T7maq)

Guessing Entropy of an Adversary

« The above metric for an o™ order attack implies the success rate for an
attack where the remaining load is o-key classes.

« The attacker has a maximum of o-key classes to which the required k
may belong.

« While the above definition is fixed wrt. the remaining work load, we
define guessing-entropy to provide a more flexible definition for the
remaining work load.

Formalizing Guessing Entropy

Input: K, L, Ek e Formal definition of
Output: Key class 7 Guessing Entropy of the
adversary against a key
1 ker K

class variable S
2 5 =(k)

3 8= [917~-790] — AEA-,L

4 return ¢ such that g; = s

GEAEK,L(TJ”J]) = E[EprEK,L]

Guessing Entropy Plots

300 T T T T 300 T T T
A 1 1 ' A no,
1250 . 1 '] 1250 1 2
()] A‘“ (A h ;’" "T '.'l lt‘u | “l'\ ‘ n I X | :l Il\"\'ﬁ\’ 1\“ , ||
ANEVA IS it N PR tll IS IRy Loyl 1t
D (AT Iy S U NEIRE D gt hogt ' gty
ol { thogngt ! LA Von eyt B \ﬂl‘ . "'“ '
Q T ST R VRIS BT b i NSRRI H) AR IO
A4 ZOOV'Tl‘: ! "lg ; WA e bl gy v 14 f l' L(I'H,:‘ ,: Y 200 t,'\;‘ |:||\: o ::":: l{ Jil :0:: i e
(I Halfy oy |y) (Y 7 L L | n'l "tl it
0] }4“1'ﬁ'|,‘m{ ! u"'l...l',:‘.l:l'.’li,,‘l’s e AT 0) (L AT T
|El"|' N U LT PRI S AR ! L) W tl,f’ ot 11“‘\“” il
L WAV I ! 1 Voot sl gyt i "y 1) ATy ! INENRART
L S S PRI |f| (AT T 1 " ke 13y I] \1. any ot yi
+ 150"|1.‘ f‘l iy lk q"p’“”“' i "“"h“ ;» L." 1! :,Il 'y + 150 N R N ! .,‘Yl } MR RN
Y= Ml‘ﬁ "I"'F lﬂn:nl. ‘:I' ol v"l:ﬂ: et iirn g w Y= Ld! ?' NI ' "'ul\ gt .‘?'
o} Iull ’\1 L "’MNHMIL"J ' ”\' '31'%."‘ ! M J|I£| ol o] d '1,:“" Il?‘:il' TR " ! 'u,' '
NSV TR T TART ARG v | 11' thy g SR e H gl AVTARTENE
o I LLoR R TR it SR Hbu[(: o VTR RN PN T Mty
L . f MII'”HN |¥|||4 R TP B N AT ST gty | Py !
C o A ST g T LR A
- — I i 4 1 [1 |
kv, :‘ﬂl::l l”lv 'il,, 1'1‘ """L‘lu‘: :ﬁ‘ 1“| |l“: '5\:5 1\ ‘\,I\ :‘ I LT“ RV L Hlﬁ:“: ll':,.\l:‘r':‘\' I|| : J :: II::"I:: L"‘llfl
C by ‘ | '"'"““‘ T o N C h */“ ST TR
AN ,. | Y T LT VR VI A ety R Wy ettt
© 50:1" m'\"u 1, VTR gt Yo @ 50 oy ”\“,\ ot il ey
o g ! '% '!l PRV . o TR/ WV L
; w I0 | b i I PR !
: AN 1 LR L A
r (¥ 4
00 20 40 60 80 100 40 60 80 100

trace# (*200) -> trace# (*200) -

CPA on Simulated Power Traces with and without noise.
Blue indicates that the guessing entropy for the correct key byte drops to O faster
than the wrong keys.

CPA on Real Power Traces

« When attacking real power traces, the effect of electrical and
algorithmic noise comes into effect.

« Architecture often has a strong effect on the algorithmic noise.

e It determines the Signal-to-Noise Ratio (SNR) which quantifies the
quality of the power traces.

e This in turn affects the Success rate and the Guessing-Entropy of the
attacks.

SNR of a Power Trace

« Consider a Cipher, like AES, with r-rounds and let S be a random variable
representing the key dependent intermediate variable of E.

. Sis called the target and satisfies S = F.(X), where X is a random
variable representing a part of known plaintext or ciphertext.

 F,.is a function which depends on a part of the cipher and the output
depends on a part of the secret key, denoted as k™.

« The function F, . also depends on the leakage function of the hardware
device.

« This component is also denoted as

L, =aFy(X)+ N, =aS + N,

Here a is some real constant. N, is some Gaussian Distribution N,~N(0, a,}

Distinguishers: Univariate Vs. Multivariate

« Leakage has a deterministic part aS.

e Can be simulated by the adversary knowing the value of X and each key
hypothesis.

e Distinguisher: A mathematical function that the attacker applies at
each point of the trace to distinguish the correct key from the wrong

key.
o If the observed leakage is denoted by F(X) then the distinguisher is a
vector D, = {d, |k € K}, whered, = D(aF«(X) + N, F;(X))

« So far, we have discussed distinguishers at one point t.

L‘ — aFk'(X)+Nt - (lS+Nt

Here a is some real constant. N, is some Gaussian Distribution N,~N(0, a,}

Distinguishers: Univariate Vs. Multivariate

« So far, we have discussed distinguishers at one point t.
e But multiple trace points can be combined within a distinguisher.

e Generally, done by calculating higher-order moments:

e (x —X)(y — V), where x, y are points on the trace at time t1 and t2

e This is basically co-variance!!!
e Multivariate attacks are good..but
« Both trace points have some noise, (some SNR)
e The noise amplifies along with the signal.

e So, have to be careful

Definition of SNR

« A register X is being updated by an AES circuit depending on the inputs.
« We observe the power traces by varying the inputs and creating a frequency plot at

some point of interest, ¢

e Our power model tells that the power values would depend on the Hamming weights,

cav .§

Var(E [Lt | S]) indicates

the variations in leakage
due to the target S at
sample point t.

This contributes to the signal
component, in aiding the
attack.

More this value, the S-values
are distinguishable better

X

Overlap

' S1

'S2

Power Values

E[L;|S]

Var(L, - E[L,] 5])

contributes to noise.

More this variance, more is the
overlap between the leakage
due to the target variable S.
This hinders the attack.

L — E[L|S]

Definition of SNR

Var(E|L, ‘ S)

SNR, =
' Var(L,- E[L|S])

« The SNR is a very useful metric for assessing the threat of a power attack on a given implementation.

« How can it be computed in experiments?
« Say we collect 10,000 traces.
We target a byte, say denoted as S.
Depending on the Hamming Weight (say) we split the traces into 9 bins.

o At atimet, thus the i""_bin consists of power values, Pl.o, e, Pl.”"_1

« The average of this gives a point in the distribution E[L,|.S']. We calculate the variance for the signal.

From each of the power values in the i""-bin we subtract the average of the bin.
« The variance of this gives the noise component.

