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Lecture 11: Entering the World of Attacks



Recap

• In the last lecture 
• Compact design of AES



Today

• Few more words about implementations 
• Entering the world of attacks.



AES Once Again

• Well, we have seen how it is done in hardware.. 
• But what about software? 
• A popular, extremely fast, yet terrible approach — T tables 

• Used quite a lot in OpenSSL 
• Not used anymore due to several cache timing attacks 

• But table based secure implementations also do exist



AES T Tables

• Let us consider the MixColumns operation 
• In software, each 32-bit AES column is a 

uint32 variable.

s0 = 2c0 ⊕ 3c1 ⊕ 1c2 ⊕ 1c3

s1 = 1c0 ⊕ 2c1 ⊕ 3c2 ⊕ 1c3

s2 = 1c0 ⊕ 1c1 ⊕ 2c2 ⊕ 3c3

s3 = 3c0 ⊕ 1c1 ⊕ 1c2 ⊕ 2c3

2 1 1 3
3 2 1 1
1 3 2 1
1 1 3 2

c0
c1
c2
c3

=

s0
s1
s2
s3



AES T Tables

• Let us consider the MixColumns operation 
• In software, each 32-bit AES column is a 

uint32 variable.  
• So we can store s in a uint32 variable.  

• Here each  is 8-bit, so we can simply do 
concatenation to get 32-bits.

si

s0 = 2c0 ⊕ 3c1 ⊕ 1c2 ⊕ 1c3

s1 = 1c0 ⊕ 2c1 ⊕ 3c2 ⊕ 1c3

s2 = 1c0 ⊕ 1c1 ⊕ 2c2 ⊕ 3c3

s3 = 3c0 ⊕ 1c1 ⊕ 1c2 ⊕ 2c3

2 1 1 3
3 2 1 1
1 3 2 1
1 1 3 2

c0
c1
c2
c3

=

s0
s1
s2
s3



AES T Tables

• Here each  is 8-bit, so we can simply do 
concatenation to get 32-bits. 

• Now we can also rearrange the terms. 
• Why this is beneficial??

si

2 1 1 3
3 2 1 1
1 3 2 1
1 1 3 2

c0
c1
c2
c3

=

s0
s1
s2
s3



AES T Tables

• Here each  is 8-bit, so we can simply do 
concatenation to get 32-bits. 

• Now we can also rearrange the terms. 
• Why this is beneficial?? 
• Observe that you can compute each 

term being XORed only from a 

si

ci

2 1 1 3
3 2 1 1
1 3 2 1
1 1 3 2

c0
c1
c2
c3

=

s0
s1
s2
s3



AES T Tables

• Why this is beneficial?? 
• Observe that you can compute each term 

being XORed only from a  

• Since  is 8-bit, so we can compute all 
possible 256 values and store them in. A 
table. 

• Same can be done for all  

• One table for each 
• Catch: Table lookup is much faster than a 

finite field operation.

ci

ci

ci

2 1 1 3
3 2 1 1
1 3 2 1
1 1 3 2

c0
c1
c2
c3

=

s0
s1
s2
s3



AES T Tables

• Why this is beneficial?? 
• We denote these tables as te0, te1, 

te2, and te3.  
• The operation is as follows:

2 1 1 3
3 2 1 1
1 3 2 1
1 1 3 2

c0
c1
c2
c3

=

s0
s1
s2
s3



It does not ends here…

• Can we do better than this? 
•

2 1 1 3
3 2 1 1
1 3 2 1
1 1 3 2

c0
c1
c2
c3

=

s0
s1
s2
s3



It does not ends here…

• Can we do better than this? 
• Observe that:                  can be 

•                                    or,                                 or  

•  So we can merge subtypes and shift rows in 
a table           

c0 |c1 |c2 |c3



It does not ends here…
• So finally



It does not ends here…
• So finally



But As We Said…

• The tables are stored in cache memory of your system. 
• AES accesses this table depending on the secret key values 
• An adversary, who is able to measure the time for each encryption 

operation, and also using the same cache can do something so that it 
can recover the secret key!!! 

• Such attacks are called cache timing attacks…
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Attacks due to Memory Wall

• If there is a Cache Hit
• Access time is less
• Power Consumption is 

less

Microprocessor

Main Memory

Cache 
Memory

● If there is a Cache Miss
◦ Access time is more
◦ Power Consumption is 

more



Timing Attacks due to Cache Memory
• Uses a spy program to determine cache behavior

Microprocessor

Spy

AES

Memory

Cache  Memory
Part of the cache memory 

occupied by tables
Cache Miss

Cache Hit



Bitslicing

• Simply speaking, implement the software like hardware 
• Results in constant-time crypto 
• Idea: Let’s say you are running on a 32-bit machine. 

• 32-bit registers 
• Logical AND, OR, NOT, XOR. 
• Also consider your block cipher in terms of these gates.



Bitslicing: A Simple Example

• Let us consider the first equation only.  
• It can be written as follows: 
and t1, x1, x4 
and t2, t1, x2 
and t3, t1, x3 
xor t4, t2, t3 

And so on…



Bitslicing: A Simple Example

• Let us consider the first equation only.  
• It can be written as follows: 
and t1, x1, x4 
and t2, t1, x2 
and t3, t1, x3 
xor t4, t2, t3 

And so on…
• Now, each of t1, x1, x2,… are mapped to 

32 bit registers; but actually they are 
processing 1-bit values 

• So, what to do?



Bitslicing: A Simple Example

• Let us consider the first equation only.  
• It can be written as follows: 
and t1, x1, x4 
and t2, t1, x2 
and t3, t1, x3 
xor t4, t2, t3 

And so on…

• Pack each register with independent 
values and process them using the same 
instruction.!!! 

• Easiest case: you can encrypt 32 
plaintext together



Bitslicing: A Simple Example
• Easiest case: you can encrypt 32 plaintext together 
• You can parallelize S-Box computations for one plaintext



Side Channel Attacks



  Why do Cryptographers Need Engineers?
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  Cryptographic Security: Real World
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Real devices leak through their physical characteristics  
• Timing  
• Power consumption 
• Electromagnetic Radiation 
• Sound 
• Faults

Analysis and mitigation of physical attacks are cryptographic as 
well as engineering problems

Strong cryptographic algorithms 
are only the beginning



  Side-Channel Attacks (SCA)

• The physical channels are correlated with the 
information being processed 

• Fundamental cause: power consumption is correlated 
with switching of CMOS transistors (0->1, 1->0) 

• Typically it is assumed that power consumption 
is correlated with the Hamming Weight/
Distance. 

• If some internal state is exposed, the secret key can be 
recovered in seconds.

Source: Internet
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  Side-Channel Attacks (SCA)

• The physical channels are correlated with the 
information being processed 

• Fundamental cause: power consumption is correlated 
with switching of CMOS transistors (0->1, 1->0) 

• Typically it is assumed that power consumption 
is correlated with the Hamming Weight/
Distance. 

• If some internal state is exposed, the secret key can be 
recovered in seconds.

Source: Testbed for Side Channel analysis and security evaluation

Source: Internet



• Cryptanalysis: Purely mathematical 
• Take example of AES 
• Cryptanalysis means, you only have access to plaintext, 

ciphertext — a lot of them 
• You have to 

• Find the key 
• Or, at least, show that it is distinguishable from uniform 

randomness

  Side-Channel Vs. Classical Cryptanalysis



• Cryptanalysis: Purely mathematical 
• Take example of RSA/ECC/PQC 
• Cryptanalysis means, you only have access to plaintext, 

ciphertext — a lot of them 
• You have to 

• Find the key 
• Maybe you need to solve the underlying hard problem 

in some (mathematical) way.

  Side-Channel Vs. Classical Cryptanalysis



• Side-Channel Cryptanalysis: Mathematics + Physics + Statistics 
• The goal is mostly to recover key 

• But also signature forgery, confidentiality breach 
• Ranges beyond crypto… 

• Kernel information extraction 
• Unprivileged access 
• Neural network reverse engineering

  Side-Channel Vs. Classical Cryptanalysis



 The Root Cause



 The Root Cause



 The Root Cause
What is exploited?  
• The state change of a gate is proportional to the 

power dissipated.  
• Think about a circuit with millions of gates. 
• How to measure  

• Power dissipation can be measured by 
putting a resistor in series with Vdd or Vss 
and the true source/ground.  

• Roughly, 1 Ohm resistors work well for many 
microcontrollers, but it is highly target 
dependent 

• We actually measure current. 
• Differential probes. 

• The best approach is to use a near-field 
H-probe an measure EM signal 

• Less noisy than global power 
measurement



 The Root Cause



 What to “Measure”?
The Crypto Running on a Microcontroller/
FPGA/ASIC  
• End of the day everything is CMOS!!!  
• Since power consumption is proportional to 

the switching activity, so we can get some 
idea about the internal computation of the 
crypto 

• The crypto is no more black box 
• In this talk we will be specifically focusing on 

symmetric key algorithms 
• AES 

• What do we mean by attacking AES? 
• Finding out it’s secret key



  Looking Inside AES
AES

• Nonlinear Boolean Function  

• Finite field inversion followed by 

affine map 

• Also implemented as a table 

• Source of confusion

1 byte 

s00
s10
s20
s20

s01
s11
s21
s31

s02
s12
s22
s32

s03
s13
s23
s33

k00
k10
k20
k20

k01
k11
k21
k31

k02
k12
k22
k32

k03
k13
k23
k33

State

1. SubBytes

2. ShiftRows
• Linear Boolean Function  

• Left circular shift of rows 

• Source of diffusion 3. MixColumns

• Linear Boolean Function  

• Multiplies each column by 

a constant matrix in GF(28) 

• Source of diffusion

4. AddRoundKey

s00
s10
s20
s20

s01
s11
s21
s31

s02
s12
s22
s32

s03
s13
s23
s33

k00
k10
k20
k20

k01
k11
k21
k31

k02
k12
k22
k32

k03
k13
k23
k33

⊕ • Linear Boolean Function  

• XOR the state with a round key



 Through the Looking Glass
There can be two kinds of power analysis attacks:  
• Simple power analysis (SPA): Exploits the operation dependence of power consumption 

• Remember the RSA example from the beginning… 
• Differential Power Analysis (DPA): Exploits the data dependence of power consumption 

• We well see now for AES 
• Fact: there is no secret dependent operation in AES, everything is uniform.



 Differential Power Analysis

• Power Trace: A set of power consumptions across a cryptographic process 

• 1 millisecond operation sampled at 5MHz yield a trace with 5000 points.
• Leakage Model: Hypothetical model relating the leakage with the internal states of the 

target algorithm.
• For AES the internal state is a 128-bit value.
• Hamming Weight Model: The power consumption is proportional to the Hamming 

weight (count of 1’s) of the state.
• Hamming Distance Model: The power consumption is proportional to the Hamming 

distance between the state in two consecutive clock cycles. — FPGA/ASICs
• More complex models are possible…
• Used to simulate leakage and also in some attacks.



 Differential Power Analysis

• Common hardware implementation of a 
block cipher 

• We consider the state of the circuit at 
time instance t — you can consider it as 
one time point in the x-axis of the trace.  

• Let this state be  

• Hamming weight is number of 1’s in . 

• Hamming distance is HW( )..  

• Why?

vt

vt

vt ⊕ vt−1



 Differential Power Analysis

• Power Trace: A set of power consumptions across a cryptographic process 

• 1 millisecond operation sampled at 5MHz yield a trace with 5000 points.
•



 Differential Power Analysis: The Idea

• Assume power leakage follows Hamming Weight. 

• Divide the HW(s) into two bins: 
• 0 bin: when LSB is 0 
• 1 bin: when LSB is 1



 Differential Power Analysis: The Idea

• Assume power leakage follows Hamming Weight. 

• Divide the HW(s) into two bins: 
• 0 bin: when LSB is 0 
• 1 bin: when LSB is 1 

• Difference-of-Mean (DoM)=20/8-12/8=1



 When the Partitioning is Random

• Parititioning done by bits simulated using rand 
function in C. 

• Observe the DoM is close to 0, as expected! 

• Note: Instead of computing the difference, we 
can use some statistical hypothesis test, such 
as t-test.  

• The hypothesis will be — whether the two 
trace distributions are the same or different 

• For a random uncorrelated bit, the two 
distributions are the same.

• Moral of the story: If the bin partitioning is based on a bit from the actual state, there will be 
significant difference in the mean values of the bins. This is because, the traces are data 
dependent.



 Attacking AES

A very very important point 
• We haven’t seen AES key schedule in detail — but it is has somewhat 

similar operations as the rounds — has SBoxes, shifts XORs etc. 
• Important: key schedule is invertible 

• That is, if you recover one round key , you can recover all, and the 
master key 



 Attacking AES

1. Measurement:  
• Make power consumption measurement of about 1000 AES operations, 100000 data points/trace,   
• Save (Ciphertexti, trace_i) 

2. Attack: 
• Target an S-Box in the last round (say the j-th S-Box) 

A. Guess a key for an S-box of last round (8 bit key, so total 256 guesses possible) 
B. Partially decrypt one byte of each ciphertext with the guessed key till the input of the last 

round S-Box. That is compute:  

C. Divide the traces into 2 groups based on the LSB of  
D. Calculate the average trace of each group 
E. Calculate the difference of two average traces 
F. Correct key guess → spikes in the differential curve 

• Repeat A-F for other S-boxes

Sj = S−1(Cj ⊕ kg
j )

Sj



 Attacking AES

CT[0] T[0][0] T[0][1] … T[0][m]

CT[1] T[1][0] T[1][1] … T[1][m]

CT[2] T[2][0] T[2][1] … T[2][m]

… … … … …

CT[n] T[n][0] T[n][1] … T[n][m]



 Attacking AES

SBOX – 11   BIT – 8  TRACE COUNT = 15,000, FPGA implementation



 Attacking AES

• DPA selection function: D(C,b,kg) is defined as computing the value of the  
• bth output bit, depending upon 

• C: Ciphertext
• kg is the guessed key for the S-Box

• In the attack,  

• If kg is a wrong guess then b is correctly evaluated only for half of the ciphertexts 
(randomly). 

• Thus for large number of points, the difference between average traces is close 
to 0 

• In other words, distribution of both the bins will be the same 
• But if kg is a correct guess, then b is correctly evaluated for all the ciphertexts.

D = S−1(Cj ⊕ kg
j )

Principle: If Ks is wrongly guessed, D behaves like a random guess.  
Thus for a large number of sample points, Δ[1..k]  tends to zero. But  
if its correct, the differential will be non-zero and show spikes when  

D is correlated with the value being processed. 



 Attacking AES

D(C10,b = 0,K10) = S−1(C10 ⊕ K*) |b=0



 Attacking AES

• Differential Trace: It is a m sample trace denoted as , where, ΔD

ΔD[ j] =
∑n−1

i=0 D(Ci, b, Kg)T[i][ j]

∑n−1
i=0 D(Ci, b, Kg)

−
∑n−1

i=0 (1 − D(Ci, b, Kg))T[i][ j]

∑n−1
i=0 (1 − D(Ci, b, Kg))

• Note:  is a particular byte of the i-th ciphertext.Ci



 Attacking AES

• Why does the attack work? 
• It’s not only the data dependency. But it also depends on the mathematics of AES  
• DPA selection function: D(C,b,kg) is defined as computing the value of the  

• bth output bit, depending upon 
• C: Ciphertext
• kg is the guessed key for the S-Box

• In the attack,  

• If kg is a wrong guess then b is correctly evaluated only for half of the ciphertexts (randomly). 
• Thus for large number of points, the difference between average traces is close to 0 
• In other words, distribution of both the bins will be the same 

• But if kg is a correct guess, then b is correctly evaluated for all the ciphertexts. 
• Note: The non-linearity of the S-Boxes play an important role here.

D = S−1(Cj ⊕ kg
j )

Principle: If Ks is wrongly guessed, D behaves like a random guess.  
Thus for a large number of sample points, Δ[1..k]  tends to zero. But  
if its correct, the differential will be non-zero and show spikes when  

D is correlated with the value being processed. 



 Attacking AES



 Attacking AES: Attack Complexity

• What is the attack complexity 
• Say you are given n number of traces 

• How much further computation you need to perform?



 Attacking AES: Attack Complexity

• Observe: We are targeting the last round of AES and attacking each S-Box separately. 

• Divide and Conquer 

• Attack complexity: always 28 

• Trace complexity: depends 

• Observe: The attack don’t need plaintext knowledge



Leakage Models



Trace Post processing

Ciphertext

Plaintext

Measurement

Trigger



 Differential Power Analysis

• Power Trace: A set of power consumptions across a cryptographic process 

• 1 millisecond operation sampled at 5MHz yield a trace with 5000 points.
• Measurement:

• Usually requires to adhere a signal bandwidth and frequency.
• We do quite high frequency sampling — e.g. for a 65 Mhz microcontroller or 150 Mhz 

FPGA implementation, we do sampling at 5 GS/sec.
• Number of samples is an important point. More samples results in better attack
• Trigger: An important constraint

• Without reliable trigger, the traces will be misaligned.—attack will be difficult
• Most of the practical implementations does not provide a very reliable trigger

• So, some realignment of traces are needed
• Today, DL algorithms are great for this purpose — does automatic realignment.



 Attacking AES

1. Measurement:  
• Make power consumption measurement of about 1000 AES operations, 100000 data points/trace,   
• Save (Ciphertexti, trace_i) 

2. Attack: 
• Target an S-Box in the last round (say the j-th S-Box) 

A. Guess a key for an S-box of last round (8 bit key, so total 256 guesses possible) 
B. Partially decrypt one byte of each ciphertext with the guessed key till the input of the last 

round S-Box. That is compute:  

C. Divide the traces into 2 groups based on the LSB of  
D. Calculate the average trace of each group 
E. Calculate the difference of two average traces 
F. Correct key guess → spikes in the differential curve 

• Repeat A-F for other S-boxes

Sj = S−1(Cj ⊕ kg
j )

Sj



 Differential Power Analysis

• Power Trace: A set of power consumptions across a cryptographic process 

• 1 millisecond operation sampled at 5MHz yield a trace with 5000 points.
• Leakage Model: Hypothetical model relating the leakage with the internal states of the 

target algorithm.
• For AES the internal state is a 128-bit value.
• Hamming Weight Model: The power consumption is proportional to the Hamming 

weight (count of 1’s) of the state.
• Hamming Distance Model: The power consumption is proportional to the Hamming 

distance between the state in two consecutive clock cycles. — FPGA/ASICs
• More complex models are possible…
• Used to simulate leakage and also in some attacks.



 Differential Power Analysis

• Common hardware implementation of a block 
cipher 

• We consider the state of the circuit at time 
instance t — you can consider it as one time 
point in the x-axis of the trace.  

• Let this state be  

• Hamming weight is number of 1’s in . 

• Hamming distance is HW( )..  

• Why? 
• After all power consumption is a result of 

transition  

• So , HW is relatively inaccurate, but works 
well for software 

• Registers often start from a specific 
initialisation value.

vt

vt

vt ⊕ vt−1

vt−1 → vt



 Differential Power Analysis

Linear Feedback Shift Register Actual Trace from an FPGA



 Differential Power Analysis

Actual Trace from an FPGA

Actual Trace from an FPGA



 Why do Gates Leak?

• Consider an AND gate  
• 4 different energy levels due to transition 

of the gate , , ,  

• We estimate , and  
which are the average energy levels 
when , and , respectively. 

•  

•  

• So 

y = ab

E0→0 E0→1 E1→0 E1→1

E(q = 0) E(q = 1)

q = 0 q = 1

E(q = 0) =
9E0→0 + 3E1→0

12

E(q = 1) =
3E0→1 + E1→1

4
E(q = 0) ≠ E(q = 1)



Make Some Noise



 Measurement Noise

• Importance of high-quality measurement 
• Noise increases the required trace count.

AES-128 Encryption with same 
plaintext and key, but resulting in 
different power traces.

• These fluctuations are due to electrical 
noise, caused due to power supply, 
clock generator, conduction and 
radiation emissions from the 
components 



 Algorithmic Noise

• Algorithmic or switching noise occurs 
because of contributions of logic cells 
to the power consumption, which are 
not under attack.  

• The power trace corresponds to the 
total power consumption of the circuit.  

• However, in the attack we target only a 
small part (see black circle in fig.) to 
reveal a portion of the key.  

• The power consumption from all the 
other parts (see blue shaded portion in 
fig.) form the algorithmic noise.  

• This would be more in a parallel 
implementation, compared to a 
serialized implementation.

Algorithmic  
Noise

Signal  
Component

Fortunately, our statistical attack can handle both



Statistical Analysis of Power Traces

• Fact: For fixed operation and fixed value, the power 
consumption is fixed. But there will be some additive 
noise. 

• Fortunately, this noise is Gaussian. 
• Let us assume that the mean is  and variance is  
• Noise mainly results in the variance… 

• Recall: The gaussian probability distribution function 

μ σ2

f(x) =
1

σ 2π
e− 1

2
(x − μ)2

σ2 x ∈ ℝ

X ∼ 𝒩(μ, σ)

• If , we call it a standard normal 
distribution. 

• The CDF of standard normal is denoted as . 

μ = 0, σ = 1

ϕ(x)



Statistical Analysis of Power Traces

• Recall: Sampling distribution 
• An unbiased estimator for  is  — the sample mean 
• An unbiased estimator for  is  — the sample 

variance (with n-1 correction factor, of course) 
• Unbiased estimator: The expected value of the 

estimator is equal to the true value of the parameter; 
e.g.  

μ x
σ2 s2

E(x) = μ



Statistical Analysis of Power Traces

• Recall: Sampling distribution 
• An unbiased estimator for  is  — the sample mean 
• An unbiased estimator for  is  — the sample 

variance (with n-1 correction factor, of course) 
• Unbiased estimator: The expected value of the 

estimator is equal to the true value of the parameter; 
e.g.  

μ x
σ2 s2

E(x) = μ

f(x) =
1

σ 2π
e− 1

2
(x − μ)2

σ2



Statistical Analysis of Power Traces
• A point in the power trace is represented as: 

•
 

• POI (point of interest) in the trace: The point(s) 
in the trace which are the best for distinguishing 
the correct key from the wrong one. 

P(t) = ∑
g

f(g, t) + 𝒩(μ, σ, t)

Histogram of a point in power trace for same pt and key



Sampling Distribution and Estimation of Parameters
• A point in the power trace is represented as: 

•
 

• The question is, how does it affect the attacks??  
• You cannot determine the exact HW/HD 

• How to manage this noise?? 
• By modelling it 
• Taking mean is a good idea as it is done for DoM 

• Sampling distribution:  
• How do we estimate ? 
• We can only access some samples from the true distribution and therefore we can only compute the 

sample mean, variance  
• They are indeed unbiased estimators.  
• But then, there are a few “statistical” points.. 

P(t) = ∑
g

f(g, t) + 𝒩(μ, σ, t)

μ, σ

x, s2



Sampling Distribution and Estimation of Parameters

• Sampling distribution:  
• How do we estimate ? 
• We can only access some samples from the true distribution and therefore we can only compute the 

sample mean, variance  
• They are indeed unbiased estimators.  
• But then, there are a few “statistical” points.. 
• Each of  has their own distribution… the sampling distributions 

μ, σ

x, s2

x, s2



Sampling Distribution and Estimation of Parameters

• Sampling distribution:  
• Let us consider the sample mean  as a random variable 
• Note that the population is normally distributed. 
• It can be shown that                                    

• You can prove it !! — try at home 
• Central Limit Theorem: Let  be independent and identically distributed random variables 

with , and variance . Then: 

This means, whatever be the population’s distribution, the sample mean will approximately follow the normal 
distributions for sufficiently large number of sample (n > 30, typically). 

• Law of large numbers: , that is  is unbiased estimator. 

X

X1, X2, ⋯Xn
E(X ) = μ < ∞ 0 < σ2 < ∞

lim
n→∞

X1 + X2 + ⋯Xn

n
→ μ X

X ∼ 𝒩(μ, σ/ n)

lim
n→∞

Pr[Zn ≤ x] = ϕ(x), ∀x ∈ ℝ

Zn =
(X1 + X2 + X3 + ⋯Xn) − nμ

nσ
=

X − nμ

nσ



Sampling Distribution and Estimation of Parameters

• Sampling distribution:  
• So, the more traces you take, the average becomes closer to the actual mean. 
• That means, if you have noise with , with more traces you can significantly reduce its impact.  
• But, how do you know that how many traces take you closest to the mean??? 

μ = const



Hypothesis Testing

• Confidence Interval  
• Determines, how close a certain parameter estimate is to its actual value 
• When we say that we have a .99 confidence interval for , actual  lies in that interval, and that happens 

99% of the time you calculate  and the interval. 
• How do we find out these intervals? 

• We shall see soon.. 

μ μ
x

• Hypothesis Testing 
• We define a hypothesis and test whether it is true or not depending on the samples 
• Suppose we hypothesize that  

• You set a null hypothesis:  

• You set an alternative hypothesis:  
• Two hypotheses must be exclusive.  
• It can be something else as well, such as  

μ = μ0
H0 : μ = μ0

H1 : μ ≠ μ0

H0 : μ1 ≠ μ2

• Normal to Standard Normal:  If  then  X ∼ 𝒩(μ, σ) Z =
X − μ

σ
∼ 𝒩(0,1)



 Standard Normal Distribution

• Let us define an as an interval  

•  

• Also, we can see that:  
• The probability that a randomly sampled value 

of Z will lie in this interval is  — 
,  

• The normal distribution tables provide 
numerically calculated values for  for 

different  

[−Zα/2, Zα/2]
P(Z ≤ Zα) = ϕ(Zα) = α

Zα = − Z1−α

1 − α
P(−Zα/2 ≤ Z ≤ Zα/2) = 1 − α

ϕ(Zα)
α



 Confidence Interval for μ
• Given  
• We need to compute “how good is the estimate 

of  for a given number of samples (traces) n”  

• If we can estimate  well, then we actually 
average out the noise and get close to the 
actual power model (HW/HD/ or something 
else).  

• Overall, we need to compute a confidence 
interval of , based on the sample mean .  

• Informally, that means, we do not know the 
exact value of , but we can say (based on ), 
what range it lies.  

•
 is the 

confidence interval for . 
•  is called the error probability 

μ
μ

μ X

μ X

[X −
σ

n
Z1− α

2
, X +

σ

n
Z1− α

2
] (1 − α)

μ
α

X ∼ 𝒩(μ, σ/ n)

⟹ Z = (X − μ)
n

σ

X ∼ 𝒩(μ, σ/ n)

• Therefore,  
P(−Zα/2 ≤ Z ≤ Zα/2) = 1 − α

⟹ P(−Zα/2 ≤ (X − μ)
n

σ
≤ Zα/2) = 1 − α

⟹ P(−Zα/2 ≤ (X − μ)
n

σ
≤ Zα/2) = 1 − α



 Confidence Interval for μ
• Overall,  lies in the interval 

 with 

probability  
• Say , then it means that if you 

take say 100 sets of n-samples,  will lie in 
the aforementioned range 99 times.   

• It is the “confidence” on the interval finding 
mechanism, not in the found interval.  

μ
[X −

σ

n
Z1− α

2
, X +

σ
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Z1− α
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]

1 − α
1 − α = 0.99
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 Hypothesis Test

• Suppose, we want to test if  

• null hypothesis:  

• alternative hypothesis:  

•  is estimated from the sample mean  
• We check  

• If  is greater than some predefined constant c, we reject . 

• Else, we accept  
• False positive (Type I error):  

• The null hypothesis is correct but got rejected;  
•  — is therefore called the error probability and  is the level of 

confidence.  
• False negative (Type II error): The null hypothesis is wrong but got accepted.  

μ = μ0
H0 : μ = μ0

H1 : μ ≠ μ0
μ X

|X − μ0 | H0 : μ = μ0
H0 : μ = μ0

P( |X − μ0 | > c) = α 1 − α



 Estimating the Number of Traces to Estimate μ
• Suppose, we want to estimate the mean with precision  c = 0.01

=

=>

• Finally,  



 Estimating the Number of Traces for DoM

• Suppose, ,  — let us assume the variance is the 
same. Let us also assume that we have n traces. 

X ∼ 𝒩(μX, σ) Y ∼ 𝒩(μY, σ)

•  X − Y ∼ 𝒩(μX − μY, σ
n + n

n2
)

•
  is the corresponding standard normal variable. Z =

X − Y − (μX − μY)

σ 2
n



 Estimating the Number of Traces for DoM

• Confidence interval for  for known :(μX − μY) σ

•
  We test if    is in the critical region. Z =

X − Y − (μX − μY)

σ 2
n

• Null Hypothesis:  , Alternate Hypothesis:  (μX − μY) = 0 (μX − μY) ≠ 0

•  Therefore, 
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Simulating the Power Traces
• Let NSample denote the number of randomly chosen plaintexts to be encrypted using 

wlog. the rolled AES cipher. 
• In such an architecture, a register is updated by the output of the AES round every 

encryption. 
• The power trace is stored in the array sample[NSample][NPoint], where NPoint is 

corresponding to the power consumption after each round of encryption. 
• For each power trace, we also store the corresponding ciphertexts in the array 

Ciphertext[NSample] 
• We simulate the power traces by using the power model (Hamming weight or 

Hamming Distance) on the state of the register before the encryption, then followed 
by that after initial key addition, then after each of the 9 rounds, and finally the cipher 
state.  

• Thus NPoint is 12 and we choose NSample as 8000. 



Algorithm for Performing DPA

DPA on first key byte of 
10th Round of AES 
Power is Simulated by 
Hamming Weight of the 
Registers after each 
Round

Power is Simulated by 
Hamming Weight of the 
Registers after each 
Round,with superimposed 
Gaussian Noise.



DOM and Power Model

• The above attack was demonstrated using Hamming Weight Power 
Model.  

• However, it can be easily adapted for a Hamming Distance power 
model. 

• Then the classification of the power traces would be based on the change of 
transitions of the target bit across two successive clock cycles. 

• Rest of Attack is same.



Stochastic Power Models
• The DoM technique for DPA is non-profiled.  
• On the contrary, there could be another kind of side channel attacks 

which fall into the category of profiled attacks. 
• In profiled attacks, one needs to have access to a pair of identical 

devices: 
• Target: limited control and running cipher with fixed key. 
• Profiler: full knowledge and control of the input and keys. 

• Profiling can help to stochastically learn the power model more 
accurately.



An Example of Such a Model
• Consider, a target byte say in the last AES round. 

•  

• Here ,  
• ,  are the portions of the cipher and the portion of the key guessed in the last round
•  stands for Inverse Sub Bytes (or inverse of the last round S-Box)

•  extracts the  bit of the state .

• In the profiling phase, we keep the deterministic part defined by  
constant. 

• However, because of noise we have to solve an over-defined system of 
equations to compute the values of the .

𝓟(𝝓(𝒙, 𝒌)) = 𝒃𝟎 + 𝚺𝟖
𝒊=𝟏𝒃𝒊(𝒈𝒊(𝝓(𝒙, 𝒌)) 

𝜙(𝑥, 𝑘) = 𝑆−1(𝑥 ⊕ 𝑘)
𝑥 𝑘
𝑆−1

𝑔𝑖 𝑖𝑡h 𝜙(𝑥, 𝑘)
𝜙(𝑥, 𝑘)

𝑏′ 𝑖𝑠



Coefficient  varying with time t. 𝑏8

Ref: Werner Schindler, Kerstin Lemke, Christof Paar, A Stochastic Model for Differential Side 
Channel Cryptanalysis, CHES 2005.

4 different keys used.  
The deviation of the co-
efficient with time shows 
that Hamming Distance is 
not the best power model. 
However, we need a profiling 
step.
In this case, 2000 
equations were solved 
(ie experiments were 
done with 2000 values of 
x)



Correlation Power Attack (CPA)
• Like DoM based DPA, CPA also relies on targeting an intermediate 

computation, typically the input or output of an S-Box. 
• These input values are computed from a known value, say the 

ciphertext and a portion of the key, which is guessed. 
• The power model is then subsequently applied to develop a 

hypothetical power trace of the device for a given input to the cipher. 
• These hypothetical power values are then stored in a matrix for 

several inputs and can be indexed by the known value of the 
ciphertext and the guessed key byte. 

• This matrix is denoted as H, the hypothetical power matrix. 



Correlation Power Attack (CPA)-Contd.
• The attacker also observes the actual power traces, and stores them in 

a matrix for several inputs.  
• The actual power values can be indexed by the known value of the 

ciphertext and the time instance when the power value was observed. 
• This matrix is denoted by T, the real power matrix. 
• It may be observed that one of the columns of the matrix H 

corresponds to the correct key k*. 
• CPA tries to compute the similarity between the columns of the 

matrix H and the columns of the matrix T, to distinguish k* from   rest: 
similarity computed by Pearson’s Correlation, usually.



Computing Correlation Coefficient for 
Simulated Power Traces for AES
• Like before, we simulate the power profile for the iterative AES, this 

time by using Hamming Distance power model applied on the state 
registers updated after each round. 

• The real power matrix is stored in the array trace[NSample][NPoint] 
• NSample: Number of Power Traces acquired 
• NPoint: Time instances for which the power values are observed. Here NPoint 

is 12.



Correlation Matrix

Hypothetical 
Power matrix 
H

Real Power 
matrix T

𝐶[𝑖][𝑗] =
Σ𝑁𝑆𝑎𝑚𝑝𝑙𝑒

𝑘=0 (h𝑃𝑜𝑤𝑒𝑟[𝑖][𝑘] − 𝑚𝑒𝑎𝑛𝐻[𝑖])(𝑡𝑟𝑎𝑐𝑒[𝑗][𝑘] − 𝑚𝑒𝑎𝑛𝑇𝑟𝑎𝑐𝑒[𝑗])

Σ𝑁𝑆𝑎𝑚𝑝𝑙𝑒
𝑘=0 (h𝑃𝑜𝑤𝑒𝑟[𝑖][𝑘] − 𝑚𝑒𝑎𝑛𝐻[𝑖])

2
Σ𝑁𝑆𝑎𝑚𝑝𝑙𝑒

𝑘=0 (𝑡𝑟𝑎𝑐𝑒[𝑗][𝑘] − 𝑚𝑒𝑎𝑛𝑇𝑟𝑎𝑐𝑒[𝑗])
2
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Computing the Correlation Matrix
• Actual Power values for all the NSample encryptions are stored in the 

array trace[NSample][NPoint].  
• However, reflect as we are calculating hypothetical power using HD, the trick 

which we applied before for storing the traces compactly will not work. 
• Attacker first scans each column of this array and computes the average, and 

stores in meanTrace[NPoint]. 

• Likewise, the hypothetical power is stored in the array 
hPower[NSample][NKey]. 

• Attacker scans each column and stores in the array meanH[NKey]



Correlation Matrix

Hypothetical 
Power matrix 
H

Real Power 
matrix T

𝐶[𝑖][𝑗] =
Σ𝑁𝑆𝑎𝑚𝑝𝑙𝑒

𝑘=0 (h𝑃𝑜𝑤𝑒𝑟[𝑖][𝑘] − 𝑚𝑒𝑎𝑛𝐻[𝑖])(𝑡𝑟𝑎𝑐𝑒[𝑗][𝑘] − 𝑚𝑒𝑎𝑛𝑇𝑟𝑎𝑐𝑒[𝑗])

Σ𝑁𝑆𝑎𝑚𝑝𝑙𝑒
𝑘=0 (h𝑃𝑜𝑤𝑒𝑟[𝑖][𝑘] − 𝑚𝑒𝑎𝑛𝐻[𝑖])

2
Σ𝑁𝑆𝑎𝑚𝑝𝑙𝑒

𝑘=0 (𝑡𝑟𝑎𝑐𝑒[𝑗][𝑘] − 𝑚𝑒𝑎𝑛𝑇𝑟𝑎𝑐𝑒[𝑗])
2

N
Sa

m
pl

e

N
Sa

m
pl

e
NKey NPoint

N
Ke

y

NPoint



Experimental Results on Simulated Traces

CPA on first key byte of 10th Round of 
AES 
Power is Simulated by Hamming 
Distance of the Registers after each 
Round

Power is Simulated by Hamming 
Distance of the Registers after 
each Round, with superimposed 
Gaussian Noise.



Summary of Correlation 
Power Analysis



Metrics for SCA
• In order to evaluate the attacks and also to compare the crypto-

implementations wrt. the SCAs we need quantifiable metrics. 
• Useful Metrics: 

• Success Rate of a SCA adversary 
• Guessing Entropy of an Adversary



Success Rate of an Adversary
• SCA works as a divide and conquer strategy, where the key space is divided into 

several equivalent classes.  
• The attack normally does not distinguish between keys which belong to the 

same class or partition.  

• We can formalize the cryptographic implementation as  where  is the key 
space.  

• The adversary assumes a leakage model, denoted by  
• The leakage model provides some information about the key or some other desirable 

information. 

• The adversary is an efficient algorithm denoted by  bounded by time 
complexity, , memory complexity, and  queries.

𝐸𝐾, 𝐾

𝐿

𝐴𝐸𝐾,𝐿:
𝜏 𝑚,   𝑞



Formal Definition of Success Rate
• The leakage exploited by the adversary , maps a key , to a set, 

within which it cannot distinguish.  

• We define these partitions by and the mapping by a function  st. 
 

• Typically,  

• The objective of the attack is to determine the class  to which a target  
belongs with non-negligible probability.  

• As an analogy, consider the Hamming Weight class, which divides the key 
space into equivalence classes or partitions.

𝑘 ∈ 𝐾

𝑆,   𝛾,
𝑠 = 𝛾(𝑘),  𝑘 ∈ 𝐾 .

𝑆 ≪ 𝐾 .

𝑠 𝑘



Formal Definition of Success Rate
• As an analogy, consider the Hamming Weight class, which divides the 

key space into equivalence classes or partitions. 
• The output of the adversary is based on the ciphertexts (black-box 

information) and the leakage (side channel information). 
• The output is a guess-vector, which are the key classes sorted in terms 

of descending order of being a likely candidate.  

• Thus we can define a order-o (  adversary when the 
adversary produces the guessing-vector as 

𝑜 ≤ |𝑆 | )
𝑔 = [𝑔1, 𝑔2, ⋯, 𝑔𝑜]



Formal Definition of Success Rate

∉

The experiment is a success if 𝑠 ∈ 𝑔

𝑆𝑢𝑐𝑐𝐴𝐸𝐾 ,𝐿(𝜏,𝑚,𝑞) = Pr[𝐸𝑥𝑝𝐴𝐸𝐾 ,𝐿
= 1]



Guessing Entropy of an Adversary

• The above metric for an order attack implies the success rate for an 
attack where the remaining load is -key classes.  

• The attacker has a maximum of o-key classes to which the required  
may belong.  

• While the above definition is fixed wrt. the remaining work load, we 
define guessing-entropy to provide a more flexible definition for the 
remaining work load. 

𝑜𝑡h

𝑜
𝑘



Formalizing Guessing Entropy
• Formal definition of 

Guessing Entropy of the 
adversary against a key 
class variable S

𝐺𝐸𝐴𝐸𝐾 ,𝐿(𝜏,𝑚,𝑞) = 𝐸[𝐸𝑥𝑝𝐴𝐸𝐾 ,𝐿
]



Guessing Entropy Plots

CPA on Simulated Power Traces with and without noise. 
Blue indicates that the guessing entropy for the correct key byte drops to 0 faster 
than the wrong keys.



CPA on Real Power Traces

• When attacking real power traces, the effect of electrical and 
algorithmic noise comes into effect.  

• Architecture often has a strong effect on the algorithmic noise.  
• It determines the Signal-to-Noise Ratio (SNR) which quantifies the 

quality of the power traces.  
• This in turn affects the Success rate and the Guessing-Entropy of the 

attacks.



SNR of a Power Trace
• Consider a Cipher, like AES, with r-rounds and let S be a random variable 

representing the key dependent intermediate variable of E.  

• S is called the target and satisfies  where is a random 
variable representing a part of known plaintext or ciphertext.  

•  is a function which depends on a part of the cipher and the output 
depends on a part of the secret key, denoted as . 

• The function  also depends on the leakage function of the hardware 
device.  

• This component is also denoted as 

𝑆 = 𝐹𝑘∗(𝑋), 𝑋 

𝐹𝑘∗

𝑘∗

𝐹𝑘∗



Distinguishers: Univariate Vs. Multivariate
• Leakage has a deterministic part aS. 

• Can be simulated by the adversary knowing the value of X and each key 
hypothesis. 

• Distinguisher: A mathematical function that the attacker applies at 
each point of the trace to distinguish the correct key from the wrong 
key.  

• If the observed leakage is denoted by  then the distinguisher is a 
vector , where  

• So far, we have discussed distinguishers at one point t.

Fk(X)
Dt = {dk |k ∈ K}t dk = D(aFk*(X) + Nt, Fk(X))



Distinguishers: Univariate Vs. Multivariate
• So far, we have discussed distinguishers at one point t. 
• But multiple trace points can be combined within a distinguisher. 

• Generally, done by calculating higher-order moments: 

• , where x, y are points on the trace at time t1 and t2 

• This is basically co-variance!!! 
• Multivariate attacks are good..but 

• Both trace points have some noise, (some SNR) 
• The noise amplifies along with the signal. 
• So, have to be careful

(x − x)(y − y)



Definition of SNR
• A register X is being updated by an AES circuit depending on the inputs. 

• We observe the power traces by varying the inputs and creating a frequency plot at 
some point of interest,  

• Our power model tells that the power values would depend on the Hamming weights, 
say 

𝑡

𝑆 .
 indicates 

the variations in leakage 
due to the target S at 
sample point 

𝑉𝑎𝑟(𝐸[𝐿𝑡 𝑆])

𝑡 .

This contributes to the signal 
component, in aiding the 
attack.  
More this value, the S-values 
are distinguishable better

𝐸[𝐿𝑡 |𝑆 ]

𝐿𝑡 − 𝐸[𝐿𝑡 |𝑆 ]

 

contributes to noise.  
More this variance, more is the 
overlap between the leakage 
due to the target variable S. 
This hinders the attack.

𝑉𝑎𝑟(𝐿𝑡 − 𝐸[𝐿𝑡 𝑆])



Definition of SNR

•

• The SNR is a very useful metric for assessing the threat of a power attack on a given implementation. 

• How can it be computed in experiments? 
• Say we collect 10,000 traces.  
• We target a byte, say denoted as S. 
• Depending on the Hamming Weight (say) we split the traces into 9 bins. 

• At a time t, thus the -bin consists of power values,   
• The average of this gives a point in the distribution . We calculate the variance for the signal. 

• From each of the power values in the -bin we subtract the average of the bin. 
• The variance of this gives the noise component.

𝑆𝑁𝑅𝑡 =
𝑉𝑎𝑟(𝐸[𝐿𝑡 𝑆])

𝑉𝑎𝑟(𝐿𝑡 − 𝐸[𝐿𝑡 𝑆])

𝑖𝑡h 𝑃 0
𝑖 , ⋯, 𝑃 𝑛𝑖−1

𝑖
𝐸[𝐿𝑡 |𝑆 ]

𝑖𝑡h



Relating Correlation with SNR
•  where  is the deterministic component of power and  is the noise. 

• Thus the correlation between the total leakage and the hypothetical power value for 
the key  as  

•

•
Thus, 

𝐿𝑡 = 𝑃𝑑𝑒𝑡 + 𝑁, 𝑃𝑑𝑒𝑡 𝑁
𝐿𝑡 

𝑖𝑡h  𝐻𝑖 𝐶𝑜𝑟𝑟(𝐻𝑖, 𝐿𝑡):

𝐶𝑜𝑟𝑟(𝐻𝑖, 𝐿𝑡) = 𝐶𝑜𝑟𝑟(𝐻𝑖, 𝑃𝑑𝑒𝑡 + 𝑁) =
𝐶𝑜𝑣(𝐻𝑖, (𝑃𝑑𝑒𝑡 + 𝑁))

𝑉𝑎𝑟(𝐻𝑖)(𝑉𝑎𝑟(𝑃𝑑𝑒𝑡) + 𝑉𝑎𝑟(𝑁 ))
𝐶𝑜𝑟𝑟(𝐻𝑖, 𝐿𝑡) =

𝐸(𝐻𝑖 . (𝑃𝑑𝑒𝑡 + 𝑁)) − 𝐸(𝐻𝑖)𝐸(𝑃𝑑𝑒𝑡 + 𝑁 )

𝑉𝑎𝑟(𝐻𝑖)𝑉𝑎𝑟(𝑃𝑑𝑒𝑡) 1 + 𝑉𝑎𝑟(𝑁)

𝑉𝑎𝑟(𝑃𝑑𝑒𝑡)
    



Relating Correlation with SNR
• If and N are independent, 

 

•  

 

• Thus, 

𝐻𝑖 
𝐶𝑜𝑣(𝐻𝑖, N) = 0 ⇒ 0 = 𝐸(𝐻𝑖 . 𝑁) − 𝐸(𝐻𝑖)𝐸(𝑁) ⇒ 𝐸(𝐻𝑖 . 𝑁) = 𝐸(𝐻𝑖)𝐸(𝑁) .

∴ 𝐸(𝐻𝑖 . (𝑃𝑑𝑒𝑡 + 𝑁)) − 𝐸(𝐻𝑖)𝐸(𝑃𝑑𝑒𝑡 + 𝑁) = 𝐸(𝐻𝑖 .
𝑃𝑑𝑒𝑡) + 𝐸(𝐻𝑖 . 𝑁) − 𝐸(𝐻𝑖)𝐸(𝑃𝑑𝑒𝑡) − 𝐸(𝐻𝑖)𝐸(𝑁) = 𝐸(𝐻𝑖 .  𝑃𝑑𝑒𝑡) − 𝐸(𝐻𝑖)𝐸(𝑃𝑑𝑒𝑡)

𝐶𝑜𝑟𝑟(𝐻𝑖, 𝐿𝑡) =
𝐸(𝐻𝑖 .  𝑃𝑑𝑒𝑡) − 𝐸(𝐻𝑖)𝐸(𝑃𝑑𝑒𝑡)

𝑉𝑎𝑟(𝐻𝑖)𝑉𝑎𝑟(𝑃𝑑𝑒𝑡) 1 + 𝑉𝑎𝑟(𝑁)

𝑉𝑎𝑟(𝑃𝑑𝑒𝑡)
    

=
𝐶𝑜𝑟𝑟(𝐻𝑖 .  𝑃𝑑𝑒𝑡)

1 + 1
𝑆𝑁𝑅

The above result can be used to evaluate an architecture based on simulated power traces. The simulation 
computes the value of . However, the real correlation can be computed using the SNR.𝐶𝑜𝑟𝑟(𝐻𝑖 .  𝑃𝑑𝑒𝑡)



DPA on an Iterative Architecture with Parallel 
S-Boxes Power traces are collected and correlated with 

hypothetical power values to perform CPA. 
All the S-Boxes are in parallel in this 
architecture, providing algorithmic noise.

We acquired 70,000 power traces and divided into 
sets of 3000 traces each. We perform the CPA 
attacks on them, and plot the average Guessing 
Entropy for 3000 traces.



DPA on a Serialized Architecture of AES
• Serialized architecture, wherein there is only 

one S-Box. 

• A MUX is used to select out one byte from 
the 128-bit state and process by the S-Box.  

• Less algorithmic noise.

Plot of average Guessing Entropy for 1000 
traces, averaged over 40 sets.  
Compared to the parallel architecture, one 
can see the less number of observations 
required.



Shuffled Architecture and SNR
• A very popular technique to increase the resistance against CPA is 

called shuffling. 
• In this architecture, the shuffling scheme randomizes the sequence of 

S-Box operations. 
• Does not have a negative effect on throughput, as in when we defend 

using dummy operations. 
• Quite easy to implement: make the select line in the multiplexer 

arbitrary. 
• However, if one observes the total power in 16 clock cycles, one can 

still get the CPA working!



Comparing based on SNR Computations
• Serialized Architecture: 

• We observe the power consumption say during the 0th S-Box computation. 
• We compute the Hamming Distance (or weight) corresponding to the 0th S-Box. Note 

for this we need the key. 
• Classes can be from 0 to 8. 

• We calculate the average of each class: , for . 

• The number of elements in each class is say  

•
Thus, Signal is  

• For the noise component from each power trace, deduct the average   if the trace 
belongs to the  class. Calculate the variance across all the classes.

𝑝𝑖 0 ≤ 𝑖 ≤ 8
𝑓𝑖 .  

𝑉𝑎𝑟(𝐸[𝐿𝑡 𝑆]) =
Σ8

𝑖=0𝑓𝑖𝑝2
𝑖

Σ8
𝑖=0𝑓𝑖

− ( Σ8
𝑖=0𝑓𝑖𝑝𝑖

Σ8
𝑖=0𝑓𝑖 )

2

𝑝𝑖
𝑖𝑡h



Frequency Plot of Signal Component of Power 
Traces for the 0-th S-Box of Serialized Architecture

• The peak around 4 is 
expected.



SNR for Shuffled Architectures

• For the shuffled scheme, we compute the SNR for the total power for 
all the 16 S-Boxes. 

• This increases as if we target only one S-Box, then the SNR would be 
(1/256)-th that of the serialized implementation. 

• We sum the power values in the traces for the sample points 
corresponding to each of the 16 cycles, and then they are divided into 
the Hamming Classes.  

• It may be noted that since we are considering the total power for all 
the S-Boxes, the Hamming classes vary from 0 to 128.



Comparison of SNRs

The average SNR for the shuffled scheme 
is around 1/3rd that of the serialized 
architecture.



Plot of Guessing Entropy for CPA on Shuffled 
vs Serialized Architectures

The GE reduces slowly 
compared to the serialized 
architecture



Profiled Attack

• The adversary has a device similar to the target device. 
• Profiling Phase: It gathers a lot of traces with known key and models 

the noise and leakage model very well 
• Attack Phase: Adversary collects a few (possibly 1) trace from the 

target device where the key is unknown and exposes the key 
• This is also called template attacks  

• The profiles are called templates 
• The modelling can be done very well with deep learning
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Exploiting Multiplie PoIs

• So far, we tried to use one PoI for our attacks 
• Sub-optimal approach 
• The information may occur at more than 1 point. 
• The measurement noise is also there 

• Both the noise and signal can be correlated in multiple neighbouring 
points 

• We have to model all. 
• Trick: Multivariate normal distribution modelling of the noise.



Exploiting Multiplie PoIs

• Trick: Multivariate normal distribution modelling of the noise. 

• We shall have a mean vector and a covariance matrix 

•  is the input vector 

• , where  — mean vector 

•  is the covariance matrix. , where  

•

x
m = [mi] mi = E[xi]
ℂ ℂ = [cij] cij = Cov(xi, xj)

cij = cji

f (x) =
1

2π𝖽𝖾𝗍(ℂ)
exp (−

1
2

(x − m)tℂ−1(x − m))
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Correlated PoIs
• Electrical noise (and signal) are correlated in neighbouring points 
• Can be visualized through scatter plot of correlation/covariances

Neighbouring points Far away points



Building Templates for AES
• Key is known 
• We go byte by byte as usual 
• Important!!! We can target leakage from any point 

• Here we go with the leakage of S[i] = P[i] XOR K[i]    
• We keep P[i] fixed and vary all other 15 plaintext bytes  

• We can also vary P[I] — more detailed template 
• For each K[i] 

• We create leakage classes — based on some hypothetical leakage model 
• Say Hamming weight (HW) 
• But can also be the exact value of S[I] 

• We also vary all other 15 key bytes randomly 
• For each value of K[I], we have a template…



Building Templates for AES
• For each class, 

• Consider multiple PoIs from the trace (say n pods). 

• Calculate , and  

•

m ℂ
TPi,Ki,j = (m, ℂ)Pi,Ki,j,0 ≤ j ≤ 255



Building Templates for AES

Template for Hamming weight 0



Building Templates for AES

Template for Hamming weight 4



Attack Phase: Template Matching
• Get the traces from the target device — key unknown 

• You may keep a plaintext byte same, to keep the variation low 

• Now, for each trace  

• Try to see which template it matches the best 

• The template for which the probability is maximum gives the correct value of K[i]  

• Important: Do this for many , and multiply the probabilities so that you have more 
confidence 

• This is called maximum likelihood estimation 

• Best Approach: You can take log of probabilities and sum them — log likelihood estimate

t

t

Pr(t; (m, ℂ)Pi,Ki, j) =
1

2π𝖽𝖾𝗍(ℂ)
exp (−

1
2

(t − m)tℂ−1(t − m))



Plot of Guessing Entropy for CPA on Shuffled 
vs Serialized Architectures

Testing Side-Channel Attacks: Common Criteria



Testing Side-Channel Attacks: Common Criteria

• Signal to Noise Ratio 
• Modified definition!!! 
• Actually the same 

• Normalised Inter Class Variance 
(NICV): 

• New metric



SNR: Alternative Expression



NICV



FIPS: Validation Style Testing



FIPS: Validation Style Testing — TVLA



Non-Specific TVLA



Specific TVLA



TVLA: How does it look?

X-axis in  scale103
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