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Cryptography

Lecture 11: SCA Countermeasures



Recap

• Till the last lecture 
• Side-Channel attacks, evaluation, metrics



Today

• Masking Against SCA



Countermeasure So Far

• We have briefly seen shuffling 
• We have briefly experienced random delay 
• Both have limited protection 
• Shuffling increases the number of traces linearly 
• Random delay can be undone with a some preprocessing (or DL).



Today’s Countermeasure

• Masking 
• Provable security against SCA 
• Exponential security amplification (with some noise) 
• Very well-established



Back to the Leakage Models

• A leakage model leaks a function of the bits processed by a gate 
• So far, we tried to “learn” the leakage model as a function of 

several bits 
• Now, we go for a simpler yet detailed abstraction



Abstraction of Leakage: Noisy Leakage Model

Chari S, Jutla CS, Rao JR, Rohatgi P (1999) Towards sound approaches to counteract power-analysis attacks. In: 
CRYPTO. Lecture notes in computer science, vol 1666. Springer, pp 398–412

• Leakage happens from every wire 

• The leakage is a noisy function of the value processed 
in every wire 

• SCA attack is basically the probability of the adversary 
distinguishing between two distribution of power traces: 

• Let the adversary be , and its interaction with a 
distribution  is . The distribution is basically the 
from traces — noisy values of the wires. 

• We are interested in distinguishing probability of 
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Abstraction of Leakage: In Simple Words

Chari S, Jutla CS, Rao JR, Rohatgi P (1999) Towards sound approaches to counteract power-analysis attacks. In: 
CRYPTO. Lecture notes in computer science, vol 1666. Springer, pp 398–412

• Let the adversary be , and its interaction with a 
distribution  is .  

• We are interested in distinguishing probability of  
• Let the adversary gets power traces corresponding 

to two different distributions  and , 
corresponding to two different secret bits 0, 1. 

• The distinguishing probability is: 
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Pr[AD0 → 1 − Pr[AD1 → 1]



Abstraction of Leakage: Probing model

Ishai Y, Sahai A, Wagner DA (2003) Private circuits: securing hardware against probing attacks. In: CRYPTO. 
Lecture notes in computer science, vol 2729. Springer, pp 463–481

• Also called threshold probing model 
• Say you have a circuit with n wires 
• The adversary can probe t wires of its choice where 

. 
• The adversary gets exact values of these wires 
• Now: 

• We shall be using probing model to argue our 
security. 

• But these two models are related !!! I will say a 
few words on them at the end…

t < n



What is Masking?

Ishai Y, Sahai A, Wagner DA (2003) Private circuits: securing hardware against probing attacks. In: CRYPTO. 
Lecture notes in computer science, vol 2729. Springer, pp 463–481

• Basically a way to make the power consumption 
uncorrelated with the internal computation 

• Randomize the computation/data 
• Even if you keep the secret same, every time the 

circuit operates on bits, all of which are random. 
• But maintain correctness 
• You have to ensure that none of the wires carry a bit 

which is correlated to the actual internal 
computation. 

• So, it is totally an algorithmic trick/strategy.



What is Masking?



The First Example
a

b
q

bm

ma
am

mb

mq

qmMasked 
AND

• , , ,  are random bits — changes at every execution even if a and b are 
fixed. 

• So is  and  

• We can say this an encoded multiplication 

•  is an encoding of a such that  

• , ,  are called masks 

• , ,  are called masked data 

• but this definition will be made more relaxed 

am ma bm mb

mq qm

(am, ma) a = am ⊕ ma

ma mb mq

am bm qm



The First Example



The First Example



Trichina’s Gate
• Observe!!! The secret 

dependent values are always 
blinded with a mask.. 

• To realize masked AND, just 
replace the multipliers with AND 
gates. 



First-Order Analysis
• The masking here breaks a value X in two shares , and . 

•  

• Let’s consider the leakage as 

X1 X2

X = X1 ⊕ X2

l = HW(X1, X2)

• First order analysis does not leak. 
• Note the leakage model 

• But second order analysis (and higher order) leaks. 
• But we can generalise masking…



Higher-Order Attacks

Generalization: compute  which works 

better and is also the second order moment (covariance)

(pt1 − pt1)(pt2 − pt2)



dth-Order Masking
• The masking here breaks a value X in d+1 shares , and . 

•  

•  is some operator —  for operating on gates — Boolean masking 

• Can be an integer addition too, Or some more complex encoding 

• Each  is a share. 

• We operate on the shares 

• Ideally, th order masking should withstand th order statistical analysis

X1 X2

X = X1 ⊥ X2 ⊥ ⋯Xd+1

⊥ ⊕

Xi

(d + 1) d



Computing on Masks: Linear Function

•  

•  

• Nonlinear (involving ANDs) is tricky

X = X1 ⊕ X2 ⊕ ⋯Xd+1

lin(X) = lin(X1 ⊕ X2 ⊕ ⋯ ⊕ Xd+1) = lin(X1) ⊕ lin(X2) ⊕ ⋯ ⊕ lin(Xd+1)



Computing on Masks: Nonlinear Function



Masking in Leakage Models
• Noisy leakage Model:  

• Each wire leaks its noisy value (independently!!). 
• But then would masking stand? 
• Noise saves your back… 

• It has been proven that for distinguishing probability , masking order d, and 
noise standard deviation , the number of observations needed is lower-
bounded by  — that is exponential security amplification!!! 

• But the downside of this model is that you cannot prove security of your 
masked circuits in real life with this. — two complex to handle the noise etc 
in formal proofs 

α
σ

σd+4 log α/log σ

Chari S, Jutla CS, Rao JR, Rohatgi P (1999) Towards sound approaches to counteract power-analysis attacks. In: 
CRYPTO. Lecture notes in computer science, vol 1666. Springer, pp 398–412



Masking in Leakage Models
• Threshold Probing Model:  

• Upto d wires of adversaries choice leaks their entire value.  
• The choice is not adaptive — that is adversary cannot change the 

choice per execution. 
• Let us consider a masked circuit with t+1 shares 

• We prove that for a circuit with n wires, if all possible d-subset of wires 
are considered one-by-one, none of these subsets gives you the actual 
value of the secret X

X = X1 ⊕ X2 ⊕ ⋯Xd+1

Ishai Y, Sahai A, Wagner DA (2003) Private circuits: securing hardware against probing attacks. In: CRYPTO. 
Lecture notes in computer science, vol 2729. Springer, pp 463–481



Trichina’s Gate
• Observe!!! The secret 

dependent values are always 
blinded with a mask.. 

• To realize masked AND, just 
replace the multipliers with AND 
gates. 

qm = (ambm + (bmma + (mbam + (mamb + mq)))



But Probing Model Does not Capture Reality!!
• In reality, you leak all wires right?  
• But then why probing model is used?? 

• Turns out that you can prove  
• Threshold probing security implies noisy probing security 
• Reductions between the models can be shown 

• Long story short: You can prove your security in the probing model and it 
will still remain secure in the noisy probing model with sufficient noise. 

• So people go on and keep improving the probing model

Duc A, Dziembowski S, Faust S (2019) Unifying leakage models: from probing attacks to noisy leakage. J Cryptol 
32(1):151–177



Security with Glitches: The Glitch Extended 
Probing Model

• The glitch-extended probing model says that you (adversary) probe a wire, you get the values of all the 
variables the wire depends on



Plan for Next Class
• We shall see some really secure masking schemes which are used in 

practice



Threshold Implementation
• State-of-the-art masking scheme… 
• Glitch-resistant 
• Motivated by the idea of Multi-party computation



Threshold Implementation (TI)
• So far, we have shown how to construct masking and how vulnerable they 

are to glitches 
• But what are the properties that can help in countering glitches? 
• TI defines four such properties: 

• Correctness 
• Uniformity 
• Non-completeness 
• Output Uniformity



Threshold Implementation (TI)
• Consider a mapping  defined by a vectorial Boolean function 

• We encode  — input shares of the variable  

• We now define a vector of functions  

• The output share of variable  are denoted as  

• Let’ see a pictorial representation…

𝔽n
2 → 𝔽m

2
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Threshold Implementation (TI)
(a1, a2, ⋯am) = f(x1, x2, ⋯xn)
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Correctness
• Let   is an encoding of the variable  

• Let  be an encoding of the variable  

• , and  

• We have  

• Correctness implies the following: 

•
 

• Here  can be seen as a value assignment of 

Xi : (x0
i , x1

i , ⋯xsx
i ) xi

Aj : (a0
j , a1

j , ⋯aso
j ) aj

𝕏 = [X1, X2, ⋯Xn] 𝔸 = [A1, A2, ⋯Am]
𝖿(𝕏) = 𝔸

∀a ∈ 𝔽 m
2 , 𝖿(𝕏) = 𝔸 ⟹ ∑

so

aso = a = ∑
so

f so(𝗑), ∀𝗑 : 𝗑 satisfies∑
sx

xsx = x ∈ 𝔽 n
2

𝗑 𝕏



Uniformity
• Let’s for simplicity, denote a random variable  taking value form .   

•  denote a value assignment to  

• Also,  is the random variable corresponding to the sharing of  

• We define  

•    is a value assignment to .  
•

X 𝔽n
2

x X
𝕏 X

Sh(x) = {x ∈ 𝔽nsx
2 |x1 ⊕ x2⋯xsx = x}

𝕏

Implication: The value of  is independent of any  shares if you have an uniform  sharing x sx − 1 sx



Uniformity



Non-Completeness



Non-Completeness: Nonlinear Functions



Non-Completeness: Affine Functions



Non-Completeness: The Key Point



Non-Completeness and Number of Shares

• Here we have first order non-completeness 
• Dependency on the function: For a function with degree t, you need at least t+1 shares to ensure non-completeness 
• So if you want to ensure, dth order non-completeness, you need at least td+1 shares.



Output Uniformity



Output Uniformity

• This circuit is first order TI, hence secure against first-order attacks 
• But what about the case when it is used as input to another circuit. 
• Output uniformity becomes crucial…



Output Uniformity

Let’s consider the case with X.Y.Z , where Z is uniformly distributed



Output Uniformity
Let’s consider the case with X.Y.Z , where Z is uniformly distributed



Uniform Sharing of a Function

|{x ∈ Sh(x) | f(x) = a} | =
2n(sin−1)

2m(sout−1)



Uniform Sharing of a Function



TI of XORs



TI of ANDs: 2-share is not Enough



TI of ANDs: 2-share is not Enough

• Three shares are good for satisfying non 
completeness 

• But still does not satisfy output uniformity 
• We need 4 shares for that!!!



Tricks to Manage Share Explosion
• So if you want to ensure, dth order non-completeness, you need at least td+1 shares. 
• Also, to ensure uniformity, you need more shares 
• That is bad!!! 
• So what to do?

• Trick 1: Use fresh randomness



Tricks to Manage Share Explosion
• Trick 2: Caution!!! Need Registers…

• Why? Because we ensure non-completeness for F and G, through Boolean expressions,  
• But not for the entire composition — so we need registers.



Tricks to Manage Share Explosion
• Trick 2: Reduce your degree



Tricks to Manage Share Explosion
• Trick 3: Trick of the day
• Better use of registers 

• Registers stop glitch propagation, so why not use them as non-
completeness tool!!! 

• Note that now we can only use d+1 shares for dth order security, and 
the degree of the function does not matter anymore



Link with Probing Model
• Glitches extend probes 
• But register and non-completeness stops probe propagation. 
• So, you can check, if you probe one wire here, you still get no 

information about the actual secret…



Conclusion
• What we didn’t study 

• More formal treatment of masking in the probing model 
• Instead of output uniformity, probing model has a different way of 

dealing with composition of masked gates — composability 
• We can prove composability — but requires more detailed 

formalization


