
Implementation Security In
Cryptography

Lecture 11: SCA Countermeasures

Recap

• Till the last lecture
• Side-Channel attacks, evaluation, metrics

Today

• Masking Against SCA

Countermeasure So Far

• We have briefly seen shuffling
• We have briefly experienced random delay
• Both have limited protection
• Shuffling increases the number of traces linearly
• Random delay can be undone with a some preprocessing (or DL).

Today’s Countermeasure

• Masking
• Provable security against SCA
• Exponential security amplification (with some noise)
• Very well-established

Back to the Leakage Models

• A leakage model leaks a function of the bits processed by a gate
• So far, we tried to “learn” the leakage model as a function of

several bits
• Now, we go for a simpler yet detailed abstraction

Abstraction of Leakage: Noisy Leakage Model

Chari S, Jutla CS, Rao JR, Rohatgi P (1999) Towards sound approaches to counteract power-analysis attacks. In:
CRYPTO. Lecture notes in computer science, vol 1666. Springer, pp 398–412

• Leakage happens from every wire

• The leakage is a noisy function of the value processed
in every wire

• SCA attack is basically the probability of the adversary
distinguishing between two distribution of power traces:

• Let the adversary be , and its interaction with a
distribution is . The distribution is basically the
from traces — noisy values of the wires.

• We are interested in distinguishing probability of

𝒜
D 𝒜D

𝒜

Abstraction of Leakage: In Simple Words

Chari S, Jutla CS, Rao JR, Rohatgi P (1999) Towards sound approaches to counteract power-analysis attacks. In:
CRYPTO. Lecture notes in computer science, vol 1666. Springer, pp 398–412

• Let the adversary be , and its interaction with a
distribution is .

• We are interested in distinguishing probability of
• Let the adversary gets power traces corresponding

to two different distributions and ,
corresponding to two different secret bits 0, 1.

• The distinguishing probability is:

𝒜
D 𝒜D

𝒜

D0 D1

Pr[AD0 → 1 − Pr[AD1 → 1]

Abstraction of Leakage: Probing model

Ishai Y, Sahai A, Wagner DA (2003) Private circuits: securing hardware against probing attacks. In: CRYPTO.
Lecture notes in computer science, vol 2729. Springer, pp 463–481

• Also called threshold probing model
• Say you have a circuit with n wires
• The adversary can probe t wires of its choice where

.
• The adversary gets exact values of these wires
• Now:

• We shall be using probing model to argue our
security.

• But these two models are related !!! I will say a
few words on them at the end…

t < n

What is Masking?

Ishai Y, Sahai A, Wagner DA (2003) Private circuits: securing hardware against probing attacks. In: CRYPTO.
Lecture notes in computer science, vol 2729. Springer, pp 463–481

• Basically a way to make the power consumption
uncorrelated with the internal computation

• Randomize the computation/data
• Even if you keep the secret same, every time the

circuit operates on bits, all of which are random.
• But maintain correctness
• You have to ensure that none of the wires carry a bit

which is correlated to the actual internal
computation.

• So, it is totally an algorithmic trick/strategy.

What is Masking?

The First Example
a

b
q

bm

ma
am

mb

mq

qmMasked
AND

• , , , are random bits — changes at every execution even if a and b are
fixed.

• So is and

• We can say this an encoded multiplication

• is an encoding of a such that

• , , are called masks

• , , are called masked data

• but this definition will be made more relaxed

am ma bm mb

mq qm

(am, ma) a = am ⊕ ma

ma mb mq

am bm qm

The First Example

The First Example

Trichina’s Gate
• Observe!!! The secret

dependent values are always
blinded with a mask..

• To realize masked AND, just
replace the multipliers with AND
gates.

First-Order Analysis
• The masking here breaks a value X in two shares , and .

•

• Let’s consider the leakage as

X1 X2

X = X1 ⊕ X2

l = HW(X1, X2)

• First order analysis does not leak.
• Note the leakage model

• But second order analysis (and higher order) leaks.
• But we can generalise masking…

Higher-Order Attacks

Generalization: compute which works

better and is also the second order moment (covariance)

(pt1 − pt1)(pt2 − pt2)

dth-Order Masking
• The masking here breaks a value X in d+1 shares , and .

•

• is some operator — for operating on gates — Boolean masking

• Can be an integer addition too, Or some more complex encoding

• Each is a share.

• We operate on the shares

• Ideally, th order masking should withstand th order statistical analysis

X1 X2

X = X1 ⊥ X2 ⊥ ⋯Xd+1

⊥ ⊕

Xi

(d + 1) d

Computing on Masks: Linear Function

•

•

• Nonlinear (involving ANDs) is tricky

X = X1 ⊕ X2 ⊕ ⋯Xd+1

lin(X) = lin(X1 ⊕ X2 ⊕ ⋯ ⊕ Xd+1) = lin(X1) ⊕ lin(X2) ⊕ ⋯ ⊕ lin(Xd+1)

Computing on Masks: Nonlinear Function

Masking in Leakage Models
• Noisy leakage Model:

• Each wire leaks its noisy value (independently!!).
• But then would masking stand?
• Noise saves your back…

• It has been proven that for distinguishing probability , masking order d, and
noise standard deviation , the number of observations needed is lower-
bounded by — that is exponential security amplification!!!

• But the downside of this model is that you cannot prove security of your
masked circuits in real life with this. — two complex to handle the noise etc
in formal proofs

α
σ

σd+4 log α/log σ

Chari S, Jutla CS, Rao JR, Rohatgi P (1999) Towards sound approaches to counteract power-analysis attacks. In:
CRYPTO. Lecture notes in computer science, vol 1666. Springer, pp 398–412

Masking in Leakage Models
• Threshold Probing Model:

• Upto d wires of adversaries choice leaks their entire value.
• The choice is not adaptive — that is adversary cannot change the

choice per execution.
• Let us consider a masked circuit with t+1 shares

• We prove that for a circuit with n wires, if all possible d-subset of wires
are considered one-by-one, none of these subsets gives you the actual
value of the secret X

X = X1 ⊕ X2 ⊕ ⋯Xd+1

Ishai Y, Sahai A, Wagner DA (2003) Private circuits: securing hardware against probing attacks. In: CRYPTO.
Lecture notes in computer science, vol 2729. Springer, pp 463–481

Trichina’s Gate
• Observe!!! The secret

dependent values are always
blinded with a mask..

• To realize masked AND, just
replace the multipliers with AND
gates.

qm = (ambm + (bmma + (mbam + (mamb + mq)))

But Probing Model Does not Capture Reality!!
• In reality, you leak all wires right?
• But then why probing model is used??

• Turns out that you can prove
• Threshold probing security implies noisy probing security
• Reductions between the models can be shown

• Long story short: You can prove your security in the probing model and it
will still remain secure in the noisy probing model with sufficient noise.

• So people go on and keep improving the probing model

Duc A, Dziembowski S, Faust S (2019) Unifying leakage models: from probing attacks to noisy leakage. J Cryptol
32(1):151–177

Security with Glitches: The Glitch Extended
Probing Model

• The glitch-extended probing model says that you (adversary) probe a wire, you get the values of all the
variables the wire depends on

Plan for Next Class
• We shall see some really secure masking schemes which are used in

practice

Threshold Implementation
• State-of-the-art masking scheme…
• Glitch-resistant
• Motivated by the idea of Multi-party computation

Threshold Implementation (TI)
• So far, we have shown how to construct masking and how vulnerable they

are to glitches
• But what are the properties that can help in countering glitches?
• TI defines four such properties:

• Correctness
• Uniformity
• Non-completeness
• Output Uniformity

Threshold Implementation (TI)
• Consider a mapping defined by a vectorial Boolean function

• We encode — input shares of the variable

• We now define a vector of functions

• The output share of variable are denoted as

• Let’ see a pictorial representation…

𝔽n
2 → 𝔽m

2

xi : (x0
i , x1

i , ⋯xsx
i) xi

𝖿 : (f1, f2, ⋯fso
)

aj (a0
j , a1

j , ⋯aso
j)

(a1, a2, ⋯am) = f(x1, x2, ⋯xn)

Threshold Implementation (TI)
(a1, a2, ⋯am) = f(x1, x2, ⋯xn)

x1 : (x0
1 , x1

1 , ⋯xsx
1)

x2 : (x0
2 , x1

2 , ⋯xsx
2)

::
xn : (x0

n , x1
n , ⋯xsx

n)

f1 f2 fso⋯

a0
1

a0
2

a0
m

a1
1

a1
2

a1
m

aso
1

aso
2

aso
m

⋯
⋯

⋯
: : :

Correctness
• Let is an encoding of the variable

• Let be an encoding of the variable

• , and

• We have

• Correctness implies the following:

•

• Here can be seen as a value assignment of

Xi : (x0
i , x1

i , ⋯xsx
i) xi

Aj : (a0
j , a1

j , ⋯aso
j) aj

𝕏 = [X1, X2, ⋯Xn] 𝔸 = [A1, A2, ⋯Am]
𝖿(𝕏) = 𝔸

∀a ∈ 𝔽 m
2 , 𝖿(𝕏) = 𝔸 ⟹ ∑

so

aso = a = ∑
so

f so(𝗑), ∀𝗑 : 𝗑 satisfies∑
sx

xsx = x ∈ 𝔽 n
2

𝗑 𝕏

Uniformity
• Let’s for simplicity, denote a random variable taking value form .

• denote a value assignment to

• Also, is the random variable corresponding to the sharing of

• We define

• is a value assignment to .
•

X 𝔽n
2

x X
𝕏 X

Sh(x) = {x ∈ 𝔽nsx
2 |x1 ⊕ x2⋯xsx = x}

𝕏

Implication: The value of is independent of any shares if you have an uniform sharing x sx − 1 sx

Uniformity

Non-Completeness

Non-Completeness: Nonlinear Functions

Non-Completeness: Affine Functions

Non-Completeness: The Key Point

Non-Completeness and Number of Shares

• Here we have first order non-completeness
• Dependency on the function: For a function with degree t, you need at least t+1 shares to ensure non-completeness
• So if you want to ensure, dth order non-completeness, you need at least td+1 shares.

Output Uniformity

Output Uniformity

• This circuit is first order TI, hence secure against first-order attacks
• But what about the case when it is used as input to another circuit.
• Output uniformity becomes crucial…

Output Uniformity

Let’s consider the case with X.Y.Z , where Z is uniformly distributed

Output Uniformity
Let’s consider the case with X.Y.Z , where Z is uniformly distributed

Uniform Sharing of a Function

|{x ∈ Sh(x) | f(x) = a} | =
2n(sin−1)

2m(sout−1)

Uniform Sharing of a Function

TI of XORs

TI of ANDs: 2-share is not Enough

TI of ANDs: 2-share is not Enough

• Three shares are good for satisfying non
completeness

• But still does not satisfy output uniformity
• We need 4 shares for that!!!

Tricks to Manage Share Explosion
• So if you want to ensure, dth order non-completeness, you need at least td+1 shares.
• Also, to ensure uniformity, you need more shares
• That is bad!!!
• So what to do?

• Trick 1: Use fresh randomness

Tricks to Manage Share Explosion
• Trick 2: Caution!!! Need Registers…

• Why? Because we ensure non-completeness for F and G, through Boolean expressions,
• But not for the entire composition — so we need registers.

Tricks to Manage Share Explosion
• Trick 2: Reduce your degree

Tricks to Manage Share Explosion
• Trick 3: Trick of the day
• Better use of registers

• Registers stop glitch propagation, so why not use them as non-
completeness tool!!!

• Note that now we can only use d+1 shares for dth order security, and
the degree of the function does not matter anymore

Link with Probing Model
• Glitches extend probes
• But register and non-completeness stops probe propagation.
• So, you can check, if you probe one wire here, you still get no

information about the actual secret…

Conclusion
• What we didn’t study

• More formal treatment of masking in the probing model
• Instead of output uniformity, probing model has a different way of

dealing with composition of masked gates — composability
• We can prove composability — but requires more detailed

formalization

