Implementation Security In
Cryptography

Lecture 11: SCA Countermeasures



Recap

e Till the last lecture
e Side-Channel attacks, evaluation, metrics



Today

e Masking Against SCA



Countermeasure So Far

« We have briefly seen shuffling
« We have briefly experienced random delay
e Both have limited protection
« Shuffling increases the number of traces linearly

« Random delay can be undone with a some preprocessing (or DL).



Today’s Countermeasure

e Masking
e Provable security against SCA
e Exponential security amplification (with some noise)

 Very well-established



Back to the Leakage Models

Simple Power Model. Lett denote the time, and N (t) be a normal distributed
random variable which represents the noise components. Let f(g,t) denote the
power consumption of gate g at the time t. Then a simplified power model for
the power consumption is the function

Pit) =" fg,8) + N(®)

e A leakage model leaks a function of the bits processed by a gate

« So far, we tried to “learn” the leakage model as a function of
several bits

« Now, we go for a simpler yet detailed abstraction



Abstraction of Leakage: Noisy Leakage Model

e Leakage happens from every wire .

e The leakage is a noisy function of the value processed

in every wire ;L_Df
e SCA attack is basically the probability of the adversary

distinguishing between two distribution of power traces: P(t) = Z flg,t) + N(2)
g

e Let the adversary be &, and its interaction with a
distribution D is &/. The distribution is basically the
from traces — noisy values of the wires.

e We are interested in distinguishing probability of

oA

Chari S, Jutla CS, Rao JR, Rohatgi P (1999) Towards sound approaches to counteract power-analysis attacks. In:
CRYPTO. Lecture notes in computer science, vol 1666. Springer, pp 398—412



Abstraction of Leakage: In Simple Words

C J

e Let the adversary be &, and its interaction with a
distribution D is of”. -

>
* We are interested in distinguishing probability of </ >_,_Df

e et the adversary gets power traces corresponding
to two different distributions D, and D;, P(t) =) f(g,1) + N(t)
corresponding to two different secret bits O, 1. !

e The distinguishing probability is:
Pr[APy = 1 — Pr[AD = 1]

Chari S, Jutla CS, Rao JR, Rohatgi P (1999) Towards sound approaches to counteract power-analysis attacks. In:
CRYPTO. Lecture notes in computer science, vol 1666. Springer, pp 398—412



Abstraction of Leakage: Probing model

e Also called threshold probing model

e Say you have a circuit with n wires

>
* The adversary can probe t wires of its choice where >_,_Df
I < n.

e The adversary gets exact values of these wires P(t) =) f(g.t) +N(t)
g

e Now:

e \We shall be using probing model to argue our
security.

e But these two models are related !!! | will say a
few words on them at the end...

Ishai Y, Sahai A, Wagner DA (2003) Private circuits: securing hardware against probing attacks. In: CRYPTO.
Lecture notes in computer science, vol 2729. Springer, pp 463—-481



What is Masking?

OmE

.

e Basically a way to make the power consumption
uncorrelated with the internal computation

e Randomize the computation/data

E\/
—

e Even if you keep the secret same, every time the
circuit operates on bits, all of which are random.

e But maintain correctness

e You have to ensure that none of the wires carry a bit
which is correlated to the actual internal
computation.

¢ So, it is totally an algorithmic trick/strategy.

Ishai Y, Sahai A, Wagner DA (2003) Private circuits: securing hardware against probing attacks. In: CRYPTO.
Lecture notes in computer science, vol 2729. Springer, pp 463—-481



What is Masking?

Masking:

SCA countermeasure.

Makes power consumption independent of
processed data

Requires fresh randomness at every execution.

Split a value X into multiple shares (X!, X2, ... X")
suchthat X! + X2 +... 4+ X" =X .

Function f(X) is split into functions (fi, f2,- - -, fn)
such that fi(X1) + fo(X?) + -+ fo(X") = f(X).

Splitting is trivial for linear functions.
Nonlinear functions require special attention.




The First Example

a
7 q
q m, Masked m
b AND
m
my, T
a =a®m | >
a
b =b®m g
m b ea,,m, b, my are random bits — changes at every execution even if a and b are
@ fixed.
4, =4 rnq «Soism, and g,
. b ¢ \We can say this an encoded multiplication
q=f(a,b) o
) e(a,,m,) is an encoding of a such thata = a,, @ m,

o m,, Ny, m, are called masks

qm = f(am > ma > bm > mb > mq ) {

°a,, bm, q,, are called masked data

¢ but this definition will be made more relaxed



The First Example |9 =4®m,

b =b®m,
q,=q9Om,
q=/f(a,b)

qm - f(am’ma’bm’mb9mq)

q, =(a-b)®m_
=(a,®m,).(b, ®m,)®m_
= (((am’bm @ bm‘mu ) @ (mb d

m

m

)) GD ma'mb) @ mq



The First Example

There are 4°=1024 possible input transmissions that can
occur.

It turns out that the expected value of the energy
required for the processing of q=0 and q=1 are identical.

Thus protected against DPA, under the assumption that
the CMOS gates switch only once in one clock cycles.

But we know there are glitches, and so the output of
gates swing a number of times before reaching a steady
state. Hence... the argument continues.



Trichina’s Gate

S Dw ™ M, My e Observe!!! The secret
n?/ AI | — ”’;’ ’i"” g b dependent values are always
Y Y Y i N Y _ blinded with a mask..
'?urrt‘o«'» ] u::rr'czm;r hfiilé’..!, { '?sto«i« e To realize masked AND, just
' e | L replace the multipliers with AND
l" xo; e gates.
g . XOR T—J
v |_XOR ].‘ ]
[ XOR fg—
n_ |
L

Qm=(ab) xor m,



First-Order Analysis

e The masking here breaks a value X in two shares X, and X,.
e Let’s consider the leakage as | = HW(X,, X,)

x| x| x| LX) | Mean(L(X) | Var(L(X))

0 0 0 0
0 1 1 2 1 1
1 0 1 1
1 1 0 1 1 0

e First order analysis does not leak.
e Note the leakage model
e But second order analysis (and higher order) leaks.

e But we can generalise masking...



Higher-Order Attacks

* Like in a 1st order DPA, where we process on a single point on the
power trace, in 2" order attacks, we exploit the joint leakage of two
intermediate values that are processed by the device.

* The attack works in the same way as the 1% order attack, except that
we preprocess the trace first.

* For example, if we know the points in the trace when f;and f, are
processed, then combining them would reveal information of
unmasked data, and then DPA would still work.

* A common preprocessing operation is to take two power values at
different times, say py,, p¢,, and de'cermi%.1 - Pt,)

Generalization: compute (p,1 — p_tl)(p,2 — p_tz) which works

better and is also the second order moment (covariance)




dth-Order Masking

e The masking here breaks a value X in d+1 shares X,, and X,.
o X=X, 1 X, 1L ---X,,
e | is some operator — @ for operating on gates — Boolean masking

e Can be an integer addition too, Or some more complex encoding

e Each X is a share.
e We operate on the shares

e Ideally, (d + 1)th order masking should withstand dth order statistical analysis



Computing on Masks: Linear Function

[ X:X1 @Xz@ '”Xd+1

o in(X)=linX, X, ® - ® Xy, = lin(X)) & lin(X,) D -+~ & lin(X,, )

e Nonlinear (involving ANDs) is tricky



Computing on Masks: Nonlinear Function

* |t is challenging for nonlinear functions.
* Example: f(X,Y) =Z @ XY
* Masked Circuit:
* ilXy, ) =2, ® X11
* (X1, X2, 11, Y2) = ((Zz D X,Y;) © X2Y1) D X, Y,

* Note again the ordering of the operations is very important!

* Don'tdo, f>(X1,X5,Y1,Y2) = (Z, @ X Y2) D (X2, D X,Y,) ...as the second
parenthesis is dependent on Y

* However, this is not secure against higher order attacks.
* Actually, not even 1%t order attacks if there are glitches.



Masking in Leakage Models

¢ Noisy leakage Model:
e Each wire leaks its noisy value (independently!!).
e But then would masking stand?
e Noise saves your back...

e |t has been proven that for distinguishing probability &, masking order d, and

noise standard deviation o, the number of observations needed is lower-

d+4log allog o

bounded by o — that is exponential security amplification!!!

e But the downside of this model is that you cannot prove security of your
masked circuits in real life with this. — two complex to handle the noise etc
in formal proofs

Chari S, Jutla CS, Rao JR, Rohatgi P (1999) Towards sound approaches to counteract power-analysis attacks. In:
CRYPTO. Lecture notes in computer science, vol 1666. Springer, pp 398—412



Masking in Leakage Models

e Threshold Probing Model:
e Upto d wires of adversaries choice leaks their entire value.

e The choice is not adaptive — that is adversary cannot change the
choice per execution.

e Let us consider a masked circuit with t+1 shares
X=X @ X0 Xy

e We prove that for a circuit with n wires, if all possible d-subset of wires
are considered one-by-one, none of these subsets gives you the actual

value of the secret X

Ishai Y, Sahai A, Wagner DA (2003) Private circuits: securing hardware against probing attacks. In: CRYPTO.
Lecture notes in computer science, vol 2729. Springer, pp 463—-481



Trichina’s Gate

a. bD. m, m, my
n ,)" T N N4 ,‘T’ n AN
’ : 3 -
. * \
R vy Y v v
GF(2) GF(2") GF(2) GF(2)

Multpber Multipher Multipher

Multpher
! - -

e Observe!!! The secret
dependent values are always
blinded with a mask..

e To realize masked AND, just

. replace the multipliers with AND
l | XéR‘ e gates.
Yy XQR iy :
yin  [XOR Je——
XOR_Jo— qn = (ay,b,, + (b,m, + (mya,, + (mmy, +m,)))
'

Qn=(a D) xor m,



But Probing Model Does not Capture Reality!!

¢ |n reality, you leak all wires right?
e But then why probing model is used??
e Turns out that you can prove
e Threshold probing security implies noisy probing security
e Reductions between the models can be shown

e Long story short: You can prove your security in the probing model and it
will still remain secure in the noisy probing model with sufficient noise.

e So people go on and keep improving the probing model

Duc A, Dziembowski S, Faust S (2019) Unifying leakage models: from probing attacks to noisy leakage. J Cryptol
32(1):151-177



Security with Glitches: The Glitch Extended

" v lm oy z2 z22@8xy2 tllﬂ) XOR
Probing Model Flain s s
ol1 1 o 0
Zs XIYz X2Y1 XaYo g IFIaares g
olo o o 1
| 1.d |l — 0fo o o
\7 olo o 1 1
ol 1 1 1 1
’e 1|0 1 0 0
11 o o 0
o i (1) (') : g Average glitch
_1— 1lo 1 o | power for the
i 1|1 0 0 1 XOR gate depends
PV [T - 1 ony.
Ll ﬁ- T R — ]

e The glitch-extended probing model says that you (adversary) probe a wire, you get the values of all the
variables the wire depends on



Plan for Next Class

e We shall see some really secure masking schemes which are used in
practice



Threshold Implementation

e State-of-the-art masking scheme...
e Glitch-resistant

e Motivated by the idea of Multi-party computation



Threshold Implementation (TI)

e So far, we have shown how to construct masking and how vulnerable they
are to glitches

e But what are the properties that can help in countering glitches?
e Tl defines four such properties:

e Correctness

e Uniformity

e Non-completeness

e Qutput Uniformity



Threshold Implementation (TI)

e Consider a mapping IF’; — [F’; defined by a vectorial Boolean function
(ala aza "'am) zf(xla-an '”xn)
« We encode x; : (x}, x/, -+-X,*) — input shares of the variable x;

o We now define a vector of functions [ : (f}, f3, *+f; )

o The output share of variable g; are denoted as (ajo, al, ---ajSO)

e Let’ see a pictorial representation...



Threshold Implementation (TI)

(alaaZa i’/ ) =f(x19x27 '"-xn)
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Correctness

o Let X, : (xl.o, xl.l, ---xl.SX) is an encoding of the variable x;

o Let Aj : (ajo, ajl, ---ajSO) be an encoding of the variable g;

® X — [Xl,Xz, "'Xn], and A —_ [Al,Az, "'Am]
e We havef(X) = A
e Correctness implies the following:

 VaeFLIX)=A = Zaso =a= ZfSO(X‘),Vx L% satisﬁestSx =xel),

o SO S)C

e Here % can be seen as a value assignment of X



Uniformity

o Let’s for simplicity, denote a random variable X taking value form [Fg.

e x denote a value assighment to X

e Also, X is the random variable corresponding to the sharing of X
o We define Sh(x) = {x € I]:;”‘X|x1 @ x2---x% = x)

e X is a value assignment to X.

(
Uniform Masking: A masking X is uniform if and only if there exists a constant p such that Vx we have:

if X € Sh(x), then Pr[X = x|X = x] = p,else Pr[X = x|X = x] = 0, and Eyesn(x) PrlX = x] =
Pr(X = x| .

Implication: The value of x is independent of any s, — 1 shares if you have an uniform s, sharing



Uniformity

* Define, X; as the r.v denoting the i*" share. Then X; denotes the vector
without the it" share

* If masking is uniform= X; and x are independent for any L.
° Pr[x — xlx — x]] — Pr[xI = xt’ xl=xllx = x] - Pr[xi-_-Xvai-xioX:x] -
PriXij=x;X;=x;X=x| Pr[Xj=x;,X=x] PriXx=x]

Pr{X=xX;i=xi] Pr|X=x
= Pr[X; = xilx = x| Pr[X;=x;|X = x, X; = X3}

The last factor equals 1 when x € Sh(x) and zero otherwise.
Thus, Vx, Pr|X; = x;|X = x| = p.
« Pr[X; = x;] = Z, Pr[X; = x;|X = x] Pr[X = x] = p = 2"(1~5x)




Non-Completeness

* Masked Circuit:
* ilX, M) =2, ® XY,
* (X1, X2, 11, Y2) = ((Zz D X,Y;) D X2Y1) D X,Y;

* Note, [, depends on all the 2 shares..Therefore an attacker probing the
corresponding wire can observe all the information required.

* ATl on the other hand ensures that if the attacker probes d wires, it can only
provide information for at most s;,, — 1 shares, which is independent of the

sensitive data.

* d-th order Non-completeness: Any combination of up to d
component functions f; of f must be independent of at least one ‘

input share.




Non-Completeness: Nonlinear Functions

o Let, (X,Y) € F2, A = f(X,Y) = XY.

* Following is a 1°* order TI:
* Ay = [1(X2,X3,Y2,Y3) = Xo ¥, @ X,Y¥; D X3Ys
* Ay = f,(X1,X3,Y1,Y3) = X3Y3 @ X, Y5 D X3V,
* A3 = f3(X1,X2, 11, Y2) = X, B X, Y, D XY,



Non-Completeness: Affine Functions

* An affine function f(X) = A can be implemented withs > d + 1
component functions to thwart d-th order attacks.

* Construction:
f1(x1) = A, = f(X1),

For2 <i <s, fi(X;) = A;, where f; is f without constant terms.

*Bg, fX) =108 X=fiX) =1D Xy, filXy) =X,2<i<s ‘



Non-Completeness: The Key Point

If the input mask X of the shared function ff is a uniform masking and
[ is a d-th order Tl then the d-th order analysis on the power
consumptions of a circuit implementing ff does not reveal the
unmasked input value x even if the inputs are delayed or glitches
occur in the circuit.



Non-Completeness and Number of Shares

S(x,y,2) = x ® yz
= (X1®Xx2®x3) @ (Y1®y29Y3) (21 D22D23)

Si(X%2,X%3,Y2,¥3,22,23) = X2 ® Y222 ® Y723 @ Y322
S2(X1,X3,Y1,Y3,Z1,Z3) = X3 @ Y323 @ y3z| @ y,Z3
S(X1,%X2,Y1,Y2,Z1,Z2) = X1 @ yi1Z| @ yiZ2 @ Y2z

e Here we have first order non-completeness
e Dependency on the function: For a function with degree t, you need at least t+1 shares to ensure non-completeness

e So if you want to ensure, dth order non-completeness, you need at least td+1 shares.



Output Uniformity

. Let, (X,Y) € F2,A = f(X,Y) = XY.

) cranalen v .
Following is a 1** order TI: X=0=X=X,®X, DX =0
* Ay = 1(X2,X3,Y2,Y3) = XoY2 @ XoY3 © X3Y, Y=0=2Y=Y, @Y, PYV:=0
* Ay = [o(X1,X3,11,Y3) = X3Y3 © X, Y3 © X3Y; ! sl
* A3 = f3(X1,X2, Y1, Y2) = X1V © X, Y, © XoY,

Distribution of (4,,4,,43)

(0,0,0) (0,0,0) (0,0,0) (0,0,0)
011 (0,0,0) (1,1,0) (1,0,1) (0,1,1)
101 (0,0,0) (1,0,1) (0,1,1) (1,1,0)
110 (0,0,0) (0,1,1) (1,1,0) (1,0,1)



Output Uniformity

ry,.a9,.ds

(r,y) | 000 OI1T 101 110 001 010 100 111
(0,0) | 7 3 3 3 0 0 0 0

(0,1) | 7 3 3 3 0 0 0 0

(LD IR 3 % -3 0 go™io 0

(L) 1"0 0 0 0 D 5t D l

e This circuit is first order Tl, hence secure against first-order attacks
e But what about the case when it is used as input to another circuit.

e Output uniformity becomes crucial...

The average Hamming weights does not depend on (x,y).
For example, if (x,y)=(0,1), average HW=(3x2)x3/16=18/16. If (x,y)=(1,1), average
l HW=((5x1)x3+3x1)/16=18/16




Output Uniformity

).a2.das
(z,y) | 000 011 101 110 001 O10 100 111
(0,0) 7 3 3 3 0 0 0 0
(0,1) ¥ 3 3 3 0 0 0 0
(1,0) 7 3 3 3 0 0 0 0
(1,1) 0 0 0 0 D 5) D I
001 (5) Let’s consider the case with X.Y.Z, where Z is uniformly distributed
010 (5)

1 100 (5)
A . PTPRNIIIN 000 [ 5454545454541=31
y : 011 5+5+1=11
- 3 0». 101 5+5+1=11
000 110 5+5+1=11

011
101
110




Output Uniformity 001.(5

010 (5
Let’s consider the case with X.Y.Z, where Z is uniformly distributed 1 100 :5;
S 111 (1)
y
1)1 ) 1)‘_). ’);; y
(r,y.z) | 000 011 101 110 001 O10 100 111
(0,0,0) | /37 9 9 9 0 0 0 0
(0,0,1) |)37 9 9 9 0 0 0 0
(0,1,0) | |37 9 9 9 0 0 0 0 |
(0,1,1) [ |37 9 9 9 0 0 0 0 Note, for (x,y,2)=(1,1,0),
(1,0,0) | 37 9 9 9 0 0 0 0 - Average Hamming
1,o.1)| 37 9 9 9 0 0 0 0 ‘a’,‘;‘“ﬁg‘;ﬂ*gz’f‘:\;ﬁt’ i-’;z
(1,1,0) | 31 11 11 11 0 0 0 0 '27/32_
o 1 0 0 0 21 21 21 1 These deviations of

means with inputs lead to
a 1**-order DPA attack.



Uniform Sharing of a Function

* Uniform Sharing of a Function: The d-th order sharing f is uniform if
and only if:

Vx € F3',Va € FJ",with f(x) = a,Va € Sh(a),and sy = d + 1:

zn(sm—l)
| {x € Sh(x)|F(x) =0}]| =

2m(S out 1 )



Uniform Sharing of a Function

* If the masking X is uniform and the circuit ff is uniform, then
masking A of a = f(x), defined by A= {f(X) is uniform.
* We show: Pr(|A = alA = al) =
Z xesh(x) Pr[A = f(x)|A = f(x)] Pr(X = x,X = x)
x,f(x)=a
* The inner probability in the summation

term:Zn(Sin—l)-m(Sout—l) Pr(x — xIX — x) Pr[X — x] —
zn(sin_l)‘m(sout—l)z—n(sin_l) —_ z-m(Sout_l) PI'[X — x]

* Thus, we have Pr[A = a4 = a) = p = 27™Gou=1) if g €
Sh(a), and 0 otherwise.



Tl of XORs

XOR is a linear function
e letc=a@b

* Leta,, a,, a, be the shares of aand b,, b,, b, be the shares of b i.e.
« a=a,Pa,Pa,
* b=b,@®b, Db,
* Letc,, c,, c; be the output shares:
* =23, Db, X
* ,=3,DDb,
* ¢;=a, Db,

* This is non-complete, uniform and correct
* In fact all the three properties can be achieved using just 2 shares!

* To summarize, Tl design for linear functions are EASY!
* XOR + AND is functionally complete, so let us look into Tl design of AND gate



Tl of ANDs: 2-share is not Enough

AND is not a linear function
* Lletc=ab
* Lets first see whether we can design a 2-share Tl

* Leta,, a, be the shares of aand b,, b, be the shares of b i.e.
* a=a3,Pa,
¢ b = b, @ b)
* The two output shares must contain the following 4 terms:
* ab,
* ab,
* ab,
* ab,
* In no way can these 4 terms be combined into 2-shares without violating non-completeness.
* So, 2 share Tl of AND gate is not possible

* We need to increase the number of shares



Tl of ANDs: 2-share is not Enough

A=X.Y

e Three shares are good for satisfying non X = xi
completeness

e But still does not satisfy output uniformity

X2 X3 X4

Y =Dy By; Dys

e We need 4 shares for that!!! A=aDardazd as
a=0Dx3Dx)(y2Dy3)Dys

+ Ay = (X2, X3, Y2, V3) = XY, @ X, Y3 @ X3V, 222 L0 lin S S Su i) &

o Az = [,(X1,X3,Y1,Y3) = X3Ya @ X, Y3 @ XY, 3 =0e®x)(n0y)dx 3y

* A3 — f3(X1:X2: Yl; YZ) — X1Y] @X]YZ @Xzyl dq4 = (Xl-}’2)':'y3



Tricks to Manage Share Explosion

e So if you want to ensure, dth order non-completeness, you need at least td+1 shares.
e Also, to ensure uniformity, you need more shares

e That is bad!!!

e So what to do?

Ao Y

A

X X1 D xo D x3
g vi D yo2 D yv3
A

e Trick 1: Use fresh randomness e e R e S e
) \_\ e ) \_y 3 ’ X3 2 ' 1 ) 2
a (x3.¥3) @ (x1.¥3) D (x3.71) D 2
a3 (x1.7) D (x1.92) D (x2.7m) D n

r, and r, are 2 bits of randomness

A o b

X =x ® x D x3

Y=y1Dy2D y3

A aa b ad a

a = (x2.92) D (x2.y3) D (x3.792) D r

a = (x3.y3) D (x1.y3) D (x3.91) D (x1.7) D (yq.r)

a3 =)D (x1.02)D (2x0)D (x.r) D (n.r)Dr

ris a unit of randomness y




Tricks to Manage Share Explosion

e Trick 2: Caution!!! Need Registers...

‘:\ G; ’,l '(al.bl.Cl....)

®
- @ > (a).b2-C2' )
@
AN

(DG

S=GoF

e Why? Because we ensure non-completeness for F and G, through Boolean expressions,
e But not for the entire composition — so we need registers.



Tricks to Manage Share Explosion

e Trick 2: Reduce your degree

oy

f=XZW oYW XYOY®Z by = b11 @ b12 ® b3

7 I . E————p by = bay @ baa @ bag

h(X, Y W)=XeYoeXWaYW bs = bsy ® bgz @ b3
h(X,Y,2)=Zad XY®XZ X=X0X28® X3
b3(X,Z,W)=XOWSXZDZW ’Z’= ‘Z’l Z?i’;
- 1 20 L3

f(X,Y,Z,W) = by @ by ® bybg @ babsg = by (by, ba, bs) e

by = X: @ Y2 ® (aW)) © (i Wa) @ (YaWy) @ (X Wh) @ (X3 Wa) @ (XaW, )
bia = X2 ® Y3 @ (YaWa) © (YaWs) © (YsWa) @ (XaWa) @ (XaWs) @ (XsWa)
bs = Xs@ Y, ® (YsW;) @ (YaW)) & (Y1 W;) @ (X3W3) @ (XsW)) @ (X, W)
by =2Z,®(Z,X2)® (Z2X,)® (Y1X2) 8 (Y2 X)) @ (4, X)) @ (Y1Xy)
b = Z2 ® (Z2X3) ® (Z3X2) ® (YaX3) ® (Y3 X2) @ (Z2X2) ® (YaX2)
by = Z3 ® (Z)X3) ® (Z3X,) ® (Y1 X3) ® (Ya X)) @ (Y3 X3) @ (Z3X3)
by = X) @ Wy ® (2, W) ® (Z)W3) ® (22 W) © (X1 Z)) @ (X1 Z2) @ (X22))
b2 = Xz ® W3 @ (Z2W3) ® (Z:W3) @ (Z3W3) @ (X222) ® (X2Z3) © (X3Z3)
bss = X3 ® W) @ (Z3W3) @ (ZsW)) @ (2, W3) © (X3Z3) ® (X3Z) @ (X1 Z3)




Tricks to Manage Share Explosion

e Trick 3: Trick of the day

e Better use of registers
e Registers stop glitch propagation, so why not use them as non-
completeness tool!!!
e Note that now we can only use d+1 shares for dth order security, and
the degree of the function does not matter anymore
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Link with Probing Model

e Glitches extend probes

e But register and non-completeness stops probe propagation.

e SO, you can check, if you probe one wire here, you still get no
information about the actual secret...
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Conclusion

e What we didn’t study
e More formal treatment of masking in the probing model
e Instead of output uniformity, probing model has a different way of
dealing with composition of masked gates — composability
e We can prove composability — but requires more detailed
formalization
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