
Implementation Security In 
Cryptography

Lecture 02: (Very rough) Intro to Theoretical Crypto



Why Theoretical Crypto?

• Just to create a bridge 
• It is a crash course — we shall only mention a few key results without 

going much into mathematical proofs. 
• Ultimate goal is to reach something called block ciphers  
• The rest of the course will be on how to make and break block 

ciphers.
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Confidentiality

• The network is untrusted.. 
• The information should remain secret during transmission…  
• Crypto-algorithms makes it gibberish looking 
• Modern cryptography: Information should also remain secret during 

storage and transit….  
• Ultra-modern cryptography: Information should remain secret while in 

use. 
• Homomorphic encryption.



Integrity

• No change allowed by unauthorised person.  

• But the change should be made by authorized users 
• modification: change made by unauthorized users. 

• Need techniques to ensure the integrity of data: 
• detect any modification made



Availability

•   Things should not become impractical. 
• Computational overheads of cryptography should be limited.



Crypto: Formal Definitions
• An SKE is a tuple of algorithms  

• KGen:   

• Enc: for , Enc is a probabilistic algorithm. 

• Dec: for , Dec is a deterministic algorithm. 

• for all , , and any ciphertext c output by Enc(m, k), it holds that Dec(c, k) = m. 

• A PKE is a tuple of algorithms  

• KGen:  

• Enc: for , Enc can be a probabilistic algorithm. 

• Dec: for , Dec is a deterministic algorithm. 

• for all , , and any ciphertext c output by Enc(m, pk), it holds that Dec(c, sk) = m.

Π = (𝖪𝖦𝖾𝗇, 𝖤𝗇𝖼, 𝖣𝖾𝖼)

k $ 𝒦
m ∈ ℳ, C ← Enc(m, k)
c ∈ 𝒞, m = Dec(c, k)

k ∈ 𝒦 m ∈ ℳ

Π = (𝖪𝖦𝖾𝗇, 𝖤𝗇𝖼, 𝖣𝖾𝖼)

(pk, sk) $ 𝒦
m ∈ ℳ, C ← Enc(m, pk)
c ∈ 𝒞, m = Dec(c, sk)

k ∈ 𝒦 m ∈ ℳ



What do we mean by “Secure”?

• Well, it is a philosophical question. 
• In cryptography, it has concrete definitions 
• Consider that I want my message being sent to remain confidential. 
• So, nobody except the intended recipient should understand anything about it 
• And this has to be ensured against someone who is “bad” — “the adversary” 
• If I can ensure that, (using say some algorithm with the aforementioned syntax) 
• Then I am secure…



Who Is “Adversary”?

  Formally, adversary is an algorithm (PPT) interacting with the cryptosystem

  We define certain “minimal” capabilities for the adversary. And then define 
“security” with respect to that… Finally we prove that a given crypto algorithm 
adheres to this definition of security and adversary…



The Adversarys’ Power: Threat Model

• Ciphertext-only attack: The adversary only knows ciphertext(s) and want to extract 
information about plaintext(s). 

• Known-plaintext attack: The adversary knows some plaintext-ciphertext pairs (for 
some key), and want to deduce information about the plaintext of some other 
ciphertext.  

• Chosen-plaintext attack: Adversary has obtained some plaintext-ciphertext pairs as 
per its choice. The goal is same as the previous attack. 

• Chosen-ciphertext attack: Adversary can additionally obtain decryptions for some 
ciphertexts of its choice, but not the one it really wants to “expose”.



What do we mean by “Secure”?

• Regardless of any information an attacker already has, a ciphertext should leak no 
additional information about the underlying plaintext. 
• Now the question is, what information does the adversary “has”?? 
• Generally some generic information about the plaintext space 
• Such as if it is an English sentence 
• Some other specifics — such as the message space is “ATTACK” or “NO 

ATTACK” 
• What is the encryption algorithm, except for the key — Kerckhoff's Principle



Let’s See a Simple Cipher: Shift Cipher

• Let  

• Let  — this can be english alphabets. 
• KGen: choose a key k. 

• Enc: for , outputs , such that 
 

• Dec:  

• Can you break this cipher? — say I have told you that it only encrypts English, and 
it is a ciphertext only attack??

𝒦 = {0,1,2,⋯,25}
ℳ = {0,1,2,⋯,25}

m = m1 | |m2 | |⋯ | |ml c = c1 | |c2 | |⋯ | |cl
ci = [mi + k] mod 26

mi = [ci − k] mod 26



Let’s Try…

• First approach — find the key by brute force: possible, there are only 26 keys  
• Key Lesson: Have a large key space



Let’s Try…

• First approach — find the key by brute force: possible, there are only 26 keys  
• Key Lesson: Have a large key space 

• Second approach: Suppose, I am sending only three possible messages with the 
following probabilities: 
• Pr[M = kim] = 0.5 
• Pr[M = ann] = 0.2 
• Pr[M = boo] = 0.3 

• Let’s say the observed ciphertext c = dqq



Let’s Try…

• First approach — find the key by brute force: possible, there are only 26 keys  
• Key Lesson: Have a large key space 

• Second approach: Suppose, I am sending only three possible messages with the 
following probabilities: 
• Pr[M = kim] = 0.5 
• Pr[M = ann] = 0.2 
• Pr[M = boo] = 0.3 

• Let’s say the observed ciphertext c = dqq 
• Can we get to know something more about the plaintext than we already know?



Let’s Try…

• First approach — find the key by brute force: possible, there are only 26 keys  
• Key Lesson: Have a large key space 

• Second approach: Pr[M = kim] = 0.5, Pr[M = ann] = 0.2, Pr[M = boo] = 0.3 
• c = dqq 
• The only way this ciphertext can occur if M = ann and K = 3, or M = boo and K = 1. 
• No possibility for “kim”. 
• Now, Pr[K = 3] = Pr [K = 1] = 1/26 — you do not know the key!! 
• So, Pr[c = dqq] = Pr[M = ann]* Pr[K = 3] + Pr[M = boo]* Pr [K = 1] = 0.5*1/26 = 1/52 
• Now, Pr[M = kim| c = dqq] = 0, Pr[M = ann| c = dqq] = 0.4, Pr[M = boo| c = dqq] = 

0.6.



Let’s Try…

• What is the takeaway here? 
• Just observing the ciphertext, and knowing some trivial information on the 

plaintext distribution you can learn a lot!! — ciphertext only attack 
• Subtle point: the attack become a bit easy as two ciphertext characters were 

repeated — it exposed some pattern. 
• Ideally, the adversary should not learn anything about the plaintext space 

seeing the ciphertext. 
• Even easier attack: Let say you know some message m and corresponding 

ciphertext c. You can recover the key K!! — known/chosen-plaintext attack



The Notion of Perfect Secrecy

• But what does it mean?? 
• No information about the message space “leaks” from the ciphertext.



The Notion of Perfect Secrecy

• Must hold true for  
• Probability distribution of the plaintext does not depend on the ciphertext. 
• The distributions of the ciphertexts for m and m’ are identical. 
• The ciphertext distributions are indistinguishable… 
• That means that the adversary learns nothing seeing the ciphertext 

distributions.  
• Can you prove that these two definitions are equivalent??? — Try it!!

∀m, m′ ∈ ℳ, ∀c ∈ 𝒞



The Notion Indistinguishability

• Let’s bring the adversary into “play”  
• The adversary has to find the bit b — we say that adversary outputs b’ and it wins if 

b’ = b. We can also say that the game outputs 1, if b’ = b.  
• What is Pr[b’=b]?

𝒜
(m0, m1) Π = (𝖪𝖦𝖾𝗇, 𝖤𝗇𝖼, 𝖣𝖾𝖼)

k $ 𝒦
b $ {0,1}
cb ← 𝖤𝗇𝖼k(mb)cb

𝖯𝗋𝗂𝗏𝖪eav
𝒜,Π



The Notion Indistinguishability

• Pr[b’ = b] is at least 1/2. Why?

𝒜
(m0, m1) Π = (𝖪𝖦𝖾𝗇, 𝖤𝗇𝖼, 𝖣𝖾𝖼)

k $ 𝒦
b $ {0,1}
cb ← 𝖤𝗇𝖼k(mb)cb

𝖯𝗋𝗂𝗏𝖪eav
𝒜,Π



The Notion Indistinguishability

• Pr[b’ = b] is at least 1/2. — can the adversary do better? 
• If it cannot — then we call it perfectly indistinguishable encryption.

𝒜
(m0, m1) Π = (𝖪𝖦𝖾𝗇, 𝖤𝗇𝖼, 𝖣𝖾𝖼)

k $ 𝒦
b $ {0,1}
cb ← 𝖤𝗇𝖼k(mb)cb

𝖯𝗋𝗂𝗏𝖪eav
𝒜,Π



The Notion Indistinguishability

•

𝒜
(m0, m1) Π = (𝖪𝖦𝖾𝗇, 𝖤𝗇𝖼, 𝖣𝖾𝖼)

k $ 𝒦
b $ {0,1}
cb ← 𝖤𝗇𝖼k(mb)cb

𝖯𝗋𝗂𝗏𝖪eav
𝒜,Π

• Once again, this notion is equivalent to perfect secrecy. — we can prove it!!  — left 
for a theory course :P



Is There Anything Perfect?  One-time Pad



Is There Anything Perfect?  One-time Pad
• Let’s see why? 
• For arbitrary ciphertext  and message : 

   Pr[C = c | M = m’] = Pr[Enc(m’, K) = c] =  

Now 

Finally,  

c ∈ 𝒞 m′ ∈ ℳ

Pr[C = c] = ∑
m′ ∈ℳ

Pr[C = c |M = m′ ]Pr[M = m′ ] = 2−l ∑
m′ ∈ℳ

Pr[M = m′ ] = 2−l

Pr[m′ ⊕ K = c] = Pr[K = c ⊕ m′ ] = 2−l

Pr[M = m′ |C = c] =
Pr[C = c |M = m′ ]Pr[M = m′ ]

Pr[C = c]
= Pr[M = m′ ]



But There are Caveats
• What if I use the same key to encrypt m0 and m1 

• ,  

• Adversary learns  

• Suppose ,   

• Then you basically get  
• You need the key as long as the message!! 
• That means if you want to communicate a movie to your friend, you first 

establish a key of 8 Gb with your friend!!! 
• So, basically, you cannot repeat and need a key size same as message size — 

inefficient!!

m0 ⊕ k = c0 m1 ⊕ k = c1
m0 ⊕ m1

m0 = 0011 m1 = 1100
m0 | |m1



But There are Caveats

• Any perfectly secret encryption have both issues mentioned before!!! 
• So, what to do???



Notion of Computational Security

• We need encryption algorithms which can use one key of fixed length to encrypt 
several plaintext 
• Perfect secrecy cannot give that….So, what to do? Compromise 
• Let’s say we have a magic algorithm: 
• Given a (fixed) key, it can generate random strings of arbitrary length. 
• This solves all problem!! Two parties share this fixed key, and generate the 

random strings as they want!!! 
• But this cannot happen in real world.



Notion of Computational Security

• We need encryption algorithms which can use one key of fixed length to encrypt 
several plaintext 
• Perfect secrecy cannot give that….So, what to do? Compromise 
• Let’s say we have a magic algorithm: 
• Given a (fixed) key, it can generate random strings of arbitrary length. 
• This solves all problem!! Two parties share this fixed key, and generate the 

random strings as they want!!! 
• But this cannot happen in real world. Can you see why??



Notion of Computational Security

• We need encryption algorithms which can use one key of fixed length to encrypt 
several plaintext 
• Perfect secrecy cannot give that….So, what to do? Compromise 
• Let’s say we have a magic algorithm: 
• Given a (fixed) key, it can generate random strings of arbitrary length. 
• This solves all problem!! Two parties share this fixed key, and generate the 

random strings as they want!!! 
• But this cannot happen in real world. — randomness cannot be controlled!!!



Notion of Computational Security

• Let’s say we have a magic algorithm: 
• Given a (fixed) key, it can generate pseudorandom strings of arbitrary length. 
• The strings generated are not random, but random looking 
• Also for the fixed key, both parties generate the same string 
• This really solves the problem. — But then what is this “pseudo randomness”? 
• Something indistinguishable from random!! 
• But can that really exist??



Notion of Computational Security

• Let’s say we have a magic algorithm: 
• Given a (fixed) key, it can generate pseudorandom strings of arbitrary length. 
• The strings generated are not random, but random looking 
• Also for the fixed key, both parties generate the same string 
• This really solves the problem. — But then what is this “pseudo randomness”? 
• Something indistinguishable from random!! 
• But can that really exist??



Notion of Computational Security

• Let’s first compromise a bit with the security: 
• We now make the adversary a polynomial time algorithm. 
• We define some security parameter n 
• Finally we re-define the success probability of the indistinguishability game 
• Negligible function: For large values of n, the function is smaller than all 1/p(n), 

where p(n) is any polynomial function in n.  



Notion of Pseudorandom Generator

• Now we are in the position of defining a pseudorandom generator (PRG) 
• It takes a bit string s of length n. 
• It outputs a bit string of length l(n) > n 
• What the adversary does?  

• It tries to distinguish this string from a random string of the same length. 
• But for PRG there should not exist any such efficient adversary 



Notion of Pseudorandom Generator

• Now how do you know that this scheme is secure? 
• Well, we can prove that if we have a 

PRG, then the adversary adhering to the 
aforementioned security game cannot 
win (except negligible probability) 
• Proof by reduction — we show that if 

there is an efficient adversary for the 
crypto scheme, then one can break the 
PRG 



Notion of Pseudorandom Function

• PRGs can give you the indistinguishability…But then… 
• The state of the PRGs important to maintain at both side of communication. 
• Practical PRGs — stream ciphers 
• That means perfect synchronisation… 

• Can we get rid of this issue? 
• Yes, but we need another theoretical object — Pseudorandom Function (PRF) 



Notion of Pseudorandom Function

• PRF is a generalisation of PRGs. Now you select from the space of random-looking functions  
• Practical PRGs — stream ciphers 
• That means perfect synchronisation… 

• Can we get rid of this issue? 
• Yes, but we need another theoretical object — Pseudorandom Function (PRF) 
• The idea is simple — it is a function that cannot be distinguished from a random function 

given its input output behaviour. 



What Can be Achieved with Pseudorandom Functions



What Can be Achieved with Pseudorandom Functions
• Security against Chosen-Plaintext attacks (also include known-plaintext attacks) 

𝒜
(m0, m1)

Π = (𝖪𝖦𝖾𝗇, 𝖤𝗇𝖼, 𝖣𝖾𝖼)
k $ 𝒦

b $ {0,1}
cb ← 𝖤𝗇𝖼k(mb)

cb

𝖯𝗋𝗂𝗏𝖪cpa
𝒜,Π

mi1, mi2, ⋯
𝖤𝗇𝖼k( . )

ci1, ci2, ⋯



How to Practically Realise Pseudorandom Functions

• Many ways exist…But the practical way is to use a block cipher 
• Its basically a permutation — encrypt n bit plaintexts to n-bit ciphertexts. 
• The key is always the same. 
• Block cipher is instrumental in developing other stronger security notions too 

—like chosen ciphertext security. 
• You can also realise Hash functions with block ciphers, to achieve integrity. 



Finally, …

• We shall make and break these block ciphers 
• If block cipher breaks — 

•  You can violate the assumptions of pseudorandom functions 
• You break your theory crypto 

• Next steps… 
• We shall see how to implement these block ciphers — pre-mid-sem 
• How to break them with practical attacks — pre and post mid-set 
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