Implementation Security In
Cryptography

Lecture 11: Fault Attacks

Recap

e Till the last lecture
e Masking...

Today

e Fault Attacks

Faults in Our Life...

e Happens....
« We are all human being (Hope there is no Al agent in my class) :P
« We all learn from our faults....

e The learning is what | am looking for here

Faults in Our Life...
WHAT IS THIS ABOUT?

Broken toys are not charged to our clients

gl oopdily Jack

I'll send $15
by postal order

How will you pay?

Liamma ol “STTe
\ A
e B d e
plane = $5 I

Dino buys toys from Jack

e The Sorcerer’s Apprenctice’s Guide to Fault Attacks, FDTC 2006

Faults in Our Life...

The 7‘aa:s, tman wants_ to Kknow
what Dino bought for $15

what did he buy
for $15?

malicious postman

e The Sorcerer’s Apprenctice’s Guide to Fault Attacks, FDTC 2006

Faults in Our Life...

{Zefhe Z'leanwh//e Jack prepares

e The Sorcerer’s Apprenctice’s Guide to Fault Attacks, FDTC 2006

Faults in Our Life...
and gives it to the postman

@ d

e The Sorcerer’s Apprenctice’s Guide to Fault Attacks, FDTC 2006

Faults in Our Life...

Wha klcks it strong enough to
break one toy

e 6

9

X

e The Sorcerer’s Apprenctice’s Guide to Fault Attacks, FDTC 2006

Faults in Our Life...

and gives it to Dino

9 e

e The Sorcerer’s Apprenctice’s Guide to Fault Attacks, FDTC 2006

Faults in Our Life...

a week later he monitors Dino's
postal order. ..

@&%ﬂﬁ =4x3=$12
%f AR AR -2:5:-$10

Lesson learned: Fault attacks can also extract secrets
from tokens!

Hardware faults can have various sources:
voltage glitches, light beams, laser beams...

e The Sorcerer’s Apprenctice’s Guide to Fault Attacks, FDTC 2006

Faults in Our Crypto...

o Introduction of faults in the normal execution of cryptographic
algorithms and analysis of faulty output to obtain the key

o First conceived in 1996 by Boneh, Demillo and Lipton

o E. Biham developed Differential Fault Analysis (DFA) of DES

o Today there are numerous examples of fault analysis of block
ciphers such as AES under a variety of fault models and fault
injection techniques

o Popular Fault Injection Techniques — Clock Glitches, Voltage
Glitches, EM and Optical Injection Techniques

What Faults are Up To?

Serious Security: Rowhammer returns
to gaslight your computer

Gaslights produce a telltale flicker when nearby lamps are lit; DRAM values do
something similar when nearby memory cells are accessed.

Written by Paul Ducklin

JULY 10, 2023

NAKED SECURITY DATA LEAKAGE ROWHAMMER SERIOUS SECURITY

You're probably familiar with the word gaslighting, used to refer to people with the odious habit of lying not

merely to cover up their own wrongdoing, but also to make it look as though someone else is at fault, even to Technology

Using just a $25 device a researcher
e s e e e e hacked into E|OI‘I MUSk'S Starllnk
system

What will the technology mogul have to say about this?

the point of getting the other person to doubt their own memory, decency and sanity.

T

Women's
blouse
hot sale
2023

Faults in Our Crypto...

Voltage-Glitch

Big World

| I |
h"‘l—l—i (" WARP

L1 111
¥ CACHE

Tight control on injection timing
* You can hit the variable you want at a
specific instant
Multi-bit — but can be made single-bit too
Biased fault distribution
Mainly transient
Multiple injection challenging

Timing can be controlled but precision is less
» Target variable must be in RAM for quite
sometime
Single-bit — fairly well controllable
Mainly persistent
Multiple injection is easier

A Break From AES...RSA Signature

e Let’s talk RSA

« Public key algorithm, — Encryption and Signature

« We talk about signature. H(M)+Aﬂ S*A*H(M)
o Simple Idea:
 Alice generates a secret and a public key. R C "‘

« Gives the public key to “Public”
« Signs a message M with secret key and generates signature C
« Everyone with the public key can verify that:

e The Cis a valid signature of M

« Cis generated by Alice only and nobody else

RSA Signature in Brief...

o Alice generates two large primes p, g and computes N = pg

. It also finds e and d, where ed = 1 mod ¢(N), this ¢(IN) is called Eular’s totient function and
$(N) = (p—1)(g — 1), asp, q are primes.

e D, q, dis secret key

« NV, e is the public key

4 mod N, and returns s | | m

. Sign: m € Z¥, compute s = m
o Verify: Checkifm' = = m, wherem’'=s° mod N

| have omitted some crucial details here for simplicity. But that’s not for what we are going to
explain..

e E.g, m is not the message but is a hash of the message..also there are some paddings
needed for security...

RSA-CRT

e CRT stands for Chinese Reminder Theorem — check it out!!!

« RSA-CRT is a performance optimisation trick...
dp (e
{ a=1 (mod p) nd { b=0 (mod p) d, =d (mod p — 1) Sp =M (mod p)
(b=1

a=0 (mod q) (mod q) dg=d (modgq—1) s — mTa (mod q)
Sq =M

Ss=aXsy,+bxs, (mod N)

Attacking RSA-CRT...

« Again, we want to find the secret key...So attack the signing process..

e Let’s say, for a message m, | can repeat the signature generation
process.

« What | do:
« Generate the correct signature s = sign(m, d)
 On the same message generate a faulty signature § = sign(m, d)

e Fault happens during the computation of the sign.

. The fault only corrupts the computation of S, Or S, but not both

Attacking RSA-CRT...

.lets =aXxs,+bXxS§, mod N
. lets=aXs,+bXs, mod N
cletA=5—-5=0D(s,— S5,
« Now, observe that, since b = 0 mod p
.A=b(sq—§q) is divisible by p
« S0, A = kp,and gcd(s — §,n) =

« Ok, you got p, you know N, so you know q — game over!!!
« Attack is also possible if you do not use CRT — analysis is slightly different

Let There Be Faults: Fault Model

Key component of a fault attack

Attack procedure changes
according to the fault model

In a fault space of
size 256, only 8

 Random localized faults faults occur in 98%
o Bit/nibble/byte fault of the total
injections!!!
o Most general model
; T Y | P
« Biased faults Al Rodbed it oot L bl s A0 s 50
o Device-dependent model di 11 0 - Z T G
 Instruction skip/modify. Id 1 #M1/ oD
« Constant fault Idi r2 0 Idi 2 0

o Stuck-at-0/1 Id r2 #M2 -Id r2 #M2
add r1 r2

o Persistant fault add r1 r2
Str r1 str r']

The AES Storv...

PlainText

|

RoundKey — AddRoundKey

J L

SubBytes

ShiftRows

MixColumns

RoundKey — AddRoundKey

L

First 9 Rounds

} 1st Round

\

Repeat
> N, -1
Round

SubBytes

ShiftRows

RoundKey — AddRoundKey

1L

CipherText
Last Round

Looking Inside AES Once Again

State 2. ShiftRows
1 byte » Linear Boolean Function
 Left circular shift of rows
P £ .
s00|s01 so@/ kooko1lkodkoa * Source of diffusion 3. MixColumns
—_—
s10/ s11|s14s13 k10 k11|k13qk13
s20] s21s23s23 k20 k2 1k23 k23 Z - 58
s20] s31s39s33 k20 k31k3k33 > L | .”]”
| (LEARE
\ 4 \ 4 \4 \ 4
* Nonlinear Boolean Function So0 | So1 | So2 | Soa Soo | So1 | So2 | Sos
1. SubBytes . L i
- « Finite field inversion followed by Si0| S11 | S12 | S Linear Boolean Function fs, Tg T Ts,,
affine map S30 | 521 | S22 | S22 | ° Multiplies each column by | $1 | 522 | S
. * Also implemented as a table S30 | 531 | S32 | S33 a constant matrix in GF(2°) ['g S3a | S3.2 | 533

e Source of diffusion

e Source of confusion

4. AddRoundKey

Soo | o | S0z [50 S-box son | s 5oz | 5o

s00s01|s02s03 kOQ[kO1|k0 k03

:) :' zg ; zo : z :3 s10s11[s1qs13 k10l k11|lk19qk13 - Linear Boolean Function
s20] s21s29s23 @ k20 k21k2dk2d - XOR the state with a round key
s20] s31s39s33 k20| k31k3 k33

The AES Story...

The attacker can corrupt one
specific round operation of AES.

One of multiple bytes of the AES
state gets corrupted.

Then what happens?

We also assume that we have
both correct and faulty ciphertext
for the same plaintext...

Where to inject the faulit:
* In round functions
* In key schedule

= T

ENC

=

= T

ENC

r—

CT

DFA

Let the correct ciphertext be

Let there be a fault at 9th round o

x/ — (xi’xé’ ...xi6)

10th Round
ByteSub

9th Round Byte 9th round 9th Round
Sub ShiftRow MixColumn

2f =87 @ k) @ S~ (x| D k)
f=5" 0 @ ks) © S~ (o3 ® kg)
=870 @ ki) @S~ D kyy)

3f' =87 (x4 @ kyg) B S (x], D kyy)

__10th Round ShiftRow

Let there be a fault at 9th round

2f =S~ (x, D k) ® ST(x] D k)

[=51 xg @ kg) @ S™'(x5 D k)
=500 @ ki) ® S~ (x); D kyy)
3f' = S @ kyy) B ST (], B kyy)

. On an average there is one solution to the equation:S~'X) ® S~'X + a) = f —
why?

» Two possible solutions can be X = 0 and X = a. Inthat case f = «

. If not, then we can transform this to fx* + afx + a = 0 — which (may) have 2
more solutions

« If X =0 or X = a, then the equation can have two more solutlons in GF(2"),

depending on is even or odd. Solutions have form {0,a, ea, e*a}, with e being a
field (GF(2")) element. — depends on some deep finite field tricks..

So, it can have 0, 2, or 4 solutions — on average 1 solutions, we observed
Thus for one value of f’ there is 1 value for k;, kg, k., k,, which satisfies the equations.

-1

Thus for all the 28 values of f’, there are 28 values for k,, kg, K., K,,

Thus the total size of AES key is 232

Let there be a fault at 9th round

o With one faulty cipher text:
> Number of possible values per 4 bytes of
the key is around 28.

> There are 232 possible candidates for 128
bits of the AES key.

> Brute force key is thus possible!

2f =S\, ® k) ® S~ Hx; B ky)
f=5"" g @ kg) ® S (0§ D ky)

S =810, @ k)@ S x), @ k)

3 =S (x4, D k) D ST (x], D kyy)

Let's Improve...8th Round Injection

% 7 7
£ - . S Ty
% // Z -
£
Eighth Eighth "f- Z
Round Round ,
Byte Sub Shaft f
- Fighth
= Nmth Round Byte Sub
Round 7 Y
-1 -1 Mix Column F, .|
2F =S¢, @ k) @S (¢, @ 4 @ ky) 1 ;/
_ _ F
F=8Scs®ks)®S™ (cs ® A5 D ks) 2 —*%
-1 -1 F3 o
F =8 (cg®@ky) DS (cg® Ay Dky) : VA
-1 -1 | Jp—
3F =5 (c3®@k3)DS (3D 43D k3)) 7
//_\ v Ninth Round Shift Row
S 7
s A |a [a A |a | , .
"1“ 2| T3 s A A4 ZF\ Fal F3[35 FI_’/A
A lala [a A lalala , 7
6| 7] 78|51 o B il Fif| F4|3F425| A 2
A A [a |a Ala [a [a > Z/m
1| 12 7 10 o 10l 11| 12 T1PF4)2F Fl/ /A F3
A A V
y A A A ' A A 2
6] 13 t1e| s S15] s 215 e Fh|2Fs| F3| BY Fy =//A

v
Tenth Round Shuift Row Tenth Round Byte Sub Nmth Round Mix Column

Let’s Improve...8th Round Injection...

e Search space reduced in two phases.

e First phase:
Find the 232 candidates of 10th round key.
e Second phase

Deduce four differential equation from differences {21°,f°,1°,31°}.
Reduce the 232 candidates to 28 using the four differential equation.

Let’s Improve...8th Round Injection...

ha— A

Find 232 candidates K,

Differential Equation

232
2F, = S-l(xo Dk, @ S'I(X'O@ko)

F = S’ (x;; ®@k3) @S_l(x'n@kw)
F = S’ (X0 @klo)@s_l (X', ®ky)
3F, = S7(x, ®k,)®S™ (x', @k,)

AES Key Schedule

Rcon
i . . * *
RotWord
l Algorithm 2: The AES-128 KeySchedule function.
Kgo,o K90,1 K90,2 K90,3 Input: (r — 1) rgund key (X = z; for i € {1,...,16}).
SubWord K K K K Output: 7*" rourd key X.
1,0 1,1 1,2 1,3)
for i < 0 to 3 do
Reon K92,0 K92,1 K92,2 K92,3 ' | T(ic<2)+1 = Tic<2)+1 B S(T(((i+1)r3)<<2)+4)
9 end
K93,0 K93,1 K93,2 K93,3 z1 — 21 @ h,

for : < 1 to 16 do
i F (a) _’%(a) (a) (a) ifl' (4 —tl) mod 4 # 0 then

RotWord Ti T DTi1
‘ end
10 10 10 10 end
A K00 K™0,1 K™%, K%
SubWord return X
10 10
K™ ol K" 4 K0, , K710, 4
% 10 10
» K™% of K" 4 K19, , K19, 4
COn
B K10 K10 K10 K10
3,0] 3,1 32 3,3

Let’s Improve...8th Round Injection...

ki1 ® S(kia ® ki10) B hio ks D k1 ko B ks kiz @ kg

KO — ko @ S(kis ®ki1) ke @ k2 k1o ® ke k14 @ k1o
ks @ S(kie @ ki2) k7 @ ks ki1 @ k7 kis @ ki

ke ® S(kiz @ ko) ks @ ks k12 @ ks k16 D k12

o AES key schedule 1s invertible

. KlO — {klakZ’ .

ki6)

Let’s Improve...8th Round Injection...

-~ HEN | 28 , .
: sFind 232 candidate K10

> & ifferential ; : : .
R Differential Equation pind 232 Candidates of K9 using keyschedule
' 1 T » Reduce K% to 28 candidates
- — Ererane =Get the master key by 28 brute-force search

232

Differential Equation 2f = AS (0,0)
- 9

, f'=AS, "

f'= Asg(0>2)

2128 3f ' ASQ(Oa3)

8th Round Injection...How does the Equation Look?

2f =8~ (14(Yoy @ k) @ k) @ 11(S ™ (214 @ k1a) © k) @ * We have 4 such equations
13(S Hz11 @ k11) ® k) ®9(S (s @ ks) @ k4))
(14 (S7Hzy @ ki) @ kL) @11(S ™ (214 ® k1a) ® k) @
13 (S (2 @ kuy) @ k3) @ 9 (S (zh @ ks) @ k))
S (14 (S (@1 @ k1) @ (k1 ® S(k1a @ ko) ® h1o))) @
S

11 (S N (@14 ® k1a) ® (k2 @ S(k15 ® k11))) ®

13 (S (x11 ® k11) ® (ks ® S(k16 ® k12))) @

9 (S~ (w5 @ ks) @ (ks @ S(krs @ ko))) ®

571(14 (57 (@ @ k1) © (k1 © S(kua & kro) © huo))) @
1 (57 (214 ® k1a) @ (ko ® S(k1s ® k11)) @

3(S7 !z, @ k11) @ (ks ® S(kie @ k12))) @

9(S (s @ ks) ® (ka ® S(k13 @ kg))))

1
1

Let’s Improve...8th Round Injection...

» Time complexity of previous attack: O(2%?)
o Time complexity of this attack: O(2°)
e Just with one fault injection!!!

Diagonal Fault Attack

o Multi Byte Faults (more practical)

- Attacker induces fault at the input of the 8th
round in some bytes

o Fault value should be non-zero but can be
arbitrary

Diagonal Fault Attack

Diagonal: A diagonal is a set of four bytes of the
state matrix,
where diagonal i is defined as follows:

D; = {bj.(j-’r-i)mod:l ; 0< 7 < 4}

According to the above definition and with
reference to the state matrix of AES

(refer figure) we obtain the following four
diagonals.

(boo, b11, bao.
D1 = (bot1, b12, ba3,
(
(

£ F.QN
) e
W

Do = (boz, b3, bao,
bos, b1, ba1,

S O

Ww

- O W@
N N S S’

i~
w
(3]

Diagonal Fault Attack

..F1

Model - 0 Model - 1 Model - 2 Model -3

» MO: One Diagonal affected.
 M1: Two Diagonals affected.

» M2: Three Diagonals affected.
» M3: Four Diagonals affected.

Diagonal Fault Attack

~ A:n
S| Mix Celumn
= = =
S
After After
q |] q |] 1 Shift R
P
L L L F1 | F4 | 3F3]2F3
F1 |3Fa|2F3| F2
— —
Invariant for an y
— fault injected
within a diagonal

o Faults induced in Diagonal D, at the
input of 8th round AES are all equivalent.

Diagonal Fault Attack

DO

D1

D2

D3

Diagonal Affected

Corresponding
Column Affected

Resulting Byte
Interrelation

2F1

Fa

F3

3F2

1

Fa

3F3

2F2

F1

3F4

2F3

F2

3F1

2F4

F3

F2

F2

F1

3re

2F3

F2

3F1

2F4

F3

3F2

2F1

4

F3

2F2

F1

4

3F3

F3

3F2

2F1

Fa

3F3

2F2

Fa

2F3

F2

F1

3F4

F3

F2

3F1

2F4

3F4

2F3

F2

F1

2F4

F3

F2

3F1

L e

Fa&

F3

3F2

2F1

Fa

3F3

2F2

Diagonal Fault Attack

r1T Ty I3 T4
C‘-T _ Iy g X7 XY
xrg Ir1o 11 12

CT' =

13 14 €15 L16

N Y Y
Mi 1 A 2 Mi 3 A 4
! / /
Ty g T Ty
J J s v
Lo L1011 12
./ ./ -/ r/
13 L14 ¥15 L16

]\]_ :Il:_) 1\3]_l

[SB(x14 + F14) +

ISB(x1 + k1) + ISB(2) + k1) =

AISB(ws + ks) + N
[SB(}.I‘g —|—]\\) - [S'B(I; —I-,Ilg.,) = [SB(IM —|—]11) —I—]SB("11 -l—lll)
ISB(«,, + k) = 3[ISB(rs + ks) +

]\‘,5 IIn'(;“. l\'T l"S
Kio = ko k10 k11 k12
11'13 l"14 /-'1.5]"16

+ ISB(xg + ks)]

+ IS B(+l\\)]

e There are in total 4 such systems of equations for a diagonal D
¢ Each system of equation gives 28 keys on an average

e AES key size gets reduced to 232,

Diagonal Fault Attack: 2 Diagonals Corrupted

8" Round 9" Round
-+ > -t -
Rownd Input By‘t:;'ub sh::?;;ﬁ Mix‘::'::l:amn
- After
Mix Column
After After
H ‘ ’ ‘ w H;_ ﬁ Byle Sub Shift Row 2F1 +3F6 | 2F5+F4 | F3+F8 | 3F2+F7
] F1 + 2F6 F5 + F4 3F3 + F8 | 2F2 + 3F7
ﬁﬁ%: F1 + F6 F5+3F4 | 2F3 + 3F8 | F2 + 2F7
| 3F1 +F6 | 3F5+2F4 | F3 + 2F8 F2 + F7
Invariant for any
fault injected
within diagonal
DO and D1

ag = 2F| + 3F§
ap = F) + 2F
as = F1 + Fg
as = 3F| + Fy

a1 + ag = ag

2a1 + 3as = Tas

Diagonal Fault Attack: 2 Diagonals Corrupted

ag =].5B(11 +/) 4].S'B(,r’l + k)
a1 = ISB(xs + ks) + ISB(xk + ks)
(12=[.SB(111+/11)—|—]SB(vy + k1)
a3 = ISB(x14 + k14) + ISB(2, + k14)

» The equation reduces the space of the 4
key bytes of AES to 216

o Two faulty ciphertexts reduce it to a unique
value on an average (experimental result).

Diagonal Fault Attack: 3 Diagonals Corrupted

8" Round

-+
After Afver
Byle Sub Shin Row

o
-

Round Input

t

After
Mix Celume

9" Round

oy

A

Alter
Byte Sub

N
i

Aler
Shift Row

After

Mix Column

\ J

2F1 + 3F6 + F11

2F5 + 3F10 + F4

2F4 + F3 + F8

3F2+ F7 + F12

F1+2F6+3FN1

F5+2F10 + F4

F9 + 3F3+ F8

2F2 + 3F7 + F12

F1+F6+ 2FN

F5 + F10 + 3F4

Fg + 2F3 + 3F8

F2 + 2F7 + 3F12

3F1+FB6+FNM

3F5 + 2F10 + 2F4|

3F9 + F3 + 2F8

F2 + F7 + 2F12

Invariant for any
fault injected
within diagonal
DO, D1 and D2

12

as

o = 2F, +3Fs + Fiy
ay = Fy 4+ 2Fs + 3F4
Fi+ Fes+2Fn
3F + Fs + F1n

11(10 -|- 13(11 e 9(12 -|— 1—1(13

Diagonal Fault Attack: 3 Diagonals Corrupted

ag = ISB(xy + ki) + [SB(2 + kq)
a1 = ISB(xg + kg) + ISB(xs + kg)
ag = 1SB(x11 + k1) + 1SB(a 11+711)
ag = 1SB(x14+ Fk14) + ISB(a 14+114)

» The equation reduces the space of the 4 key
bytes of AES to 224

» Four faulty ciphertexts reduce it to a unigue
value on an average (experimental result).

Diagonal Fault Attack: Practical Injection

q

quil:vd‘.’.\mz. F':l‘jh “O\(:El. 0 "’.‘;::' 1 "‘gjg : -"",';':;‘.l 3 37.0 20 | 122 | w3 | 23 0
T / 38.0 138 | 101 129 34 0
36.1 sa| o 0 0 0 38.1 o7 | 116 185 | 183 0

5121 0 0 0 o Al L 882 _ 1401 127 | 198 | v _[_ 0 _
=l 3 77"/~ 388 2 | 60 155 | 257 5
st |1 0 0 38.4 17 | 62 187 | 254 12
so@ | 4 0 0 0 38,5 0 % 68 %1 63
S04 & L 0 o 38.6 0 0 16 3190 T
07| 5 L o o 38.7 0 2 20 203 197
igg ";B—f g ’ g 38.8 0 1 N 200 | 218
- . - - 38.9 0 11 12 %8 01
' . - - 30.0 15| 50 10y | w8 23
13 " 0 30.1 0 2 12 197 | 3sm
0 0 302 0 5 2 9 142
5 0 0 308 0 3 11 ®ms | 218
38 0 0 304 0 0 0 184 | 3w
84 a 0 30.5 0 0 6 198 | 368
122 57 0 306 0 0 0 150 362
135 | 123 0 30.7 0 0 0 a1 191
e | | oo 308 o| o o | 18 | 494
e | = - 300 0 0 0 14 198
108 | 147 0 40.0 0 0 0 0 512

ATTACK REGION

Going Beyond AES...Let’s Try DES

Plaintext (64 bits)

IP

Half Block (32 bits) Subkey (48 bits)

N
%
tr

Source: Wikipedia

Going Beyond AES...Let’s Try DES

L15 R15

KS16

L16 R16

Simplify

>

L15

L16

» The Sorcerer’s Apprenctice’s Guide to Fault Attacks, FDTC 2006

Going Beyond AES...Let’s Try DES

115 R15
E} K16 L16=RI15
R16=S(RIS®@ K16)D L15
S-Box
B
1/
L.16 R16

» The Sorcerer’s Apprenctice’s Guide to Fault Attacks, FDTC 2006

Going Beyond AES...Let’s Try DES

P
> L16 = R15
11> Rl>
R16=S(RIS®K16)®L15
6} K16 After Fault...
S-Box

i L16' = R15’

¢ R16'=S(RI5 ®K16)®DL15
L16 R16

» The Sorcerer’s Apprenctice’s Guide to Fault Attacks, FDTC 2006

Going Beyond AES...Let’s Try DES

&
> L16 = R15
1,15 Rl>
R16=S(RI5®K16)®L15
E} K16 After Fault...
S-Box
o L16' = R15’
N R16' = S(R15 ®K16)® L15
L16 R16

Calculate the differential...

RI6®RI6' =S(RI5®K16)®LI5® S(RIS®KI16)D 15
= S(LI6@®K16)® S(116'® K16)

» The Sorcerer’s Apprenctice’s Guide to Fault Attacks, FDTC 2006

DES Attack

- Note that here both input and output differentials are
known...

- Unlike AES where only a pattern of the input differentials
are known

> S0, you can solve the equations for k as the only unknown

- Note that DES S-Boxes are 6 X 4...s0 6 bits has to be
guessed simultaneously...
> You can also use the differential distribution table

mentioned in the last class to find the number of solutions
for each S-Box

DES Attack

- Each equation gives 4-5 solutions for the key on average...
- So, for 8 S-boxs, roughly 2! ((5)%) suggestions remain for
the last round key.

> Another issue with DES — although the key size is 56,
round key size is 48.

- S0 2% reduces to 2!® — total master key can be found with
218 % 28 = 22% exhaustive search...

Using Multiple Ciphertexts

 Common strategy for reducing attack complexity

* Applies irrespective of AES or DES or any
' other cipher..

e Let’s try for AES...

* |n general, multiplying the number of faulty
ciphertext directly reduces the final key
space size and therefore the complexity of
the exhaustive search

C’; key space

C’; key space

Let's Improve...8th Round Injection

f
» - =VA
Eighth Eighth ‘lf _'///
Round Round | 7 2
Byte Sub Shaft 3 = ///
Row Eighth]
= Nmth Round Byte Sub
Round 7 Y
_ - Mix Col Fi,
2F =S, ®@k) @S (e, ® 4, ® k) e //
-1 -1 B —=
F=8S"es ®ks)®S™ (cs ® As D ks) ST
— - | JR—
Fi =S 1(C9 @kg)@S 1(69 @Ag @kg) : /A
_ _ %
3F =S (e ®kp3) @S (3@ A3 D) F4_"/%
A . ¥ Ninth Round Shift Row
A"Lll A2 .-\3 .-3.4 AI A2 AS /2}7\ Fyu F3 3}72 FI_’/A
, ' , , , . &
A A A | A Z/m
nf 2l e 10 o1 %10 * 11| * 12 F1J|3F4|2F4 F /A‘ F3
A |A L A i %
A6l 13 e P s Al a2 P s 3F/1 2E4| F3| B Fy =%
Tenth Round Shuift Row Tenth Round Byte Sub Nmth Round Mix Column

Let's Improve...8th Round Injection

For 1 column, a single injection reduces the key
space from 232 to 28.

28is basically the expected number of remaining
subkeys

This is done by satisfying the equation system.

The probability of g given (4-byte) subkey satisfying

2

: L _ H-24
this equation is pYs) 277,

Now, consider another fault injection

We can take intersections between the key
suggestions provided by these two injections...

For 2-injections the probability will become (272%)?.

Expected number of remain subkeys:
232 % (27?%? <1 — So practically only one
subkey will remain

2F =S H e ®@k)®S™ (e ® 4, ® k)
F=S"(cs®ks)®S™ (cs ® As D ks)
Fi=5"(cg®ky)®S ™ (cy ® Ay D ko)
3F, =87 (e3 @ ki) @S (¢3 ® A3 D ky3)

A General Model for Differential Fault Attacks

» ldentify a distinguisher:

Based on fault patterns...

Example: For AES, 8th round injection, the distinguisher is the linear pattern observed due to fault
propagation

For DES, the distinguisher is R16 @ R16’ — a known value and part of ciphertext!!!

Distiguisher is mostly an input differential A,

Always try to form equations of the form S™1(X) @ S~!(X + a) = f3, where S is a (part of) the
distinguisher..

» Divide-and Conquer: Find a distinguisher evaluation strategy so that you do not need to guess a lot of keys
together.

o For AES attacks, this distinguisher evaluation complexity was 236 _ we have a divide-and conquer strategy

which guesses 32-bits of key at once (independently for 4 columns)

. For DESitis 2°

o Calculate the Remaining Key Space: Estimate the number of solutions to your equation system. That gives
you the number of remaining keys after the attack. You have to search these keys exhaustively...

Fault Attacks (FA)

In a fault space of
size 256, only 8

« Key component of a fault attack

 Attack procedure changes faults occur in 98%
according to the fault model of the total
 Random localized faults TSI
o Bit/nibble/byte fault o itk ddesdtodllhindloudltal b dlil ol 0
o Most general model di 1 0 _ 74 W e G
- Biased faults d #M1/ hop ’
o Device-dependent model Idi r2 0 di 2 0
« Instruction skip/modify. Id 2 #M2 -Id 0 #M2
 Constant fault add r1 r2 add 11 12
o Stuck-at-0/1 str r1 str r1

© Sayandeep Saha -- Indian Institute of Technology, Kharagpur

Fault Attacks (FA)

* Inject fault in the device during encryption/decryption.
* Analyze the faulty response to extract the secret

« Differential fault attacks.

» Biased fault attacks (SFA/SIFA).

= T
= T
\

AN
(—1

|\
(—

|\
(—1

l\

ENC ENC ENC| |ENC|*" [ENC

QO
—
—
o
—

S 2 (¢ wen D

Statistical Fault Analysis (SFA)

The Key Idea:

Biased fault injection
makes the state
statistically biased.

This bias is visible only for
correct key guess.

Such attacks require
several faulty ciphertexts

Faulty State
I ‘ P, P, |..| P,
000 000

7/ % 7
001 000 l’ l’ l’

010 010 ENC| |ENC| " |ENC
011 :> 010 | | | | | |
Lo 1o CTy CTy, | -+ | CTy,

101 100 C)
110 110 SFA/SIFA

111 1710
Example: Consider a stuck-at-0

fault at the LSB bit of the
intermediate state. The faulty state
can only assume even values.

Statistical Fault Analysis (SFA)

P1..N
|

4

C

Round 1

)

Round 2

Round n-1

Round n

J
y
}

}

C’1..N

...N

C'1

/\: Kg
N
Decrypt till the
Injection state

\4

255 [#{i|STH(CBK,) =i} 1 ’
SEI(Kg) =). P 256
i=0

K9 with highest SEI is the correct key

Faults make the distribution of the state
statistically biased at the injection point.

Round 1

)

Round 2

Round n-1

Round n

2

/

The bias become visible only if the faulty ciphertexts
are partially decrypted with the correct key guess.

For wrong guesses the bias disappears.

22-Sep-21

Statistical Fault Analysis (SFA)

Similar to SCA attacks in some sense...
Key reason: The bias is only observable while the key guess is correct.
Interesting fact: You do not need to know the exact bias

« The SEI metric does not require exact statistical distribution of the
bias.

Issues: Can only be applied at the last few rounds. Not like DFA which can
also be applied at the middle rounds.

Statistical Fault Analysis (SFA)

Similar to SCA attacks in some sense...
Key reason: The bias is only observable while the key guess is correct.
Interesting fact: You do not need to know the exact bias

« The SEI metric does not require exact statistical distribution of the
bias.

Issues: Can only be applied at the last few rounds. Not like DFA which can
also be applied at the middle rounds.

Today

 Fault attack Countermeasures
e Breaking and fixing FA countermeasures...

It's just Redundant Computation

Do same computation several times.

« We call it redundant branches of computation.

 When output/internal computation does not match it
simply outputs a random value or outputs nothing...

* Also called concurrent error detection (CED)

« Assumption: The adversary cannot fault all the
branches with same valued fault.

» Motivated by ideas from classical fault tolerance

literature.

* Error-detection/Correction codes.

ENC

CT

ENC| ™

CT

ENC

CT

CT

What is an Error-Detection/Correction Code

» Adds some redundancy in data so a fixed number of

erroneous bits can be detected/corrected. P
Definition 1 (Linear Code). A binary linear [n, k]-code C with \
length n and rank k is defined as a vector subspace over Fy which
maps messages x € F% to codewords ¢ € C.
ENC ENC| ™ ENC
Definition 2 (Generator Matrix). A k X n-matrix G is a
generator matrix of an [n,k|-code C iff it consists of k basis l l l
vectors of C with length n. It can be used to map every message CT| =|CT =| CT
x € F} to its corresponding codeword with x - G = ¢ € C.
Definition 3 (Minimum Distance). The minimum distance d \ /
of a linear [n, k, d]-code C is defined as
d:min{wt(cl@02) | c1,c0 € C, g ;écz}, CT

where wt : Fy — N denotes the Hamming weight.

What is an Error-Detection/Correction Code

Lemma 1. A linear [n,k,d|-code can detect all erroneous
codewords ¢’ = ¢ ® e with wt(e) < d.

INPUT
Lemma 2. A linear [n,k,d|-code can correct all erroneous |
, — =] ,/ ; .
codewords ¢ = ¢ ® e with wt(e) < d/2 Target Predicton
In other words, a linear |n, k, d]-code can detect errors up to A A
(d — 1) bits, or correct errors up to (d — 1)/2 bits.
Check

. C
Definition 4 (Systematic Code). The generator matrix G of a I
systematic code C is of the form G = [I|P] where I} denotes OUTPUT

the identity matrix of size k.

« What is the advantage of systematic code?
- Each message x is padded with check bits x’ where x’ = x. P
cc=<x|x'">

» So, you can process the message and check bits separately.

What is an Error-Detection/Correction Code

« Example 1: INPUT
« Simply repeat your computation A times. l
Target
e It turns into a code [Ak, k, A]. A

« Duplication: 4 = 2

Check

» Triple modular redundancy: 4 = 3

« Overhead: A times extra computation

« Example 2:

- Add a parity bit as x" = @, x. — simply compute the XOR of all bits

[k + 1,k,2] code, with error-detection capability 1 bits. — no correction

« To check the received wordy, &,y =@, x

Predictor
A/

C

!

OouUTPUT

Challenges of CED: Hardware Vs. Time Tradeoff

 Hardware Redundancy:
» Keep separate hardware for the predictor
» Almost 100% overhead for simple duplication
* Parity is sightly better, but for many other codes the overhead can
be similar to duplication

* Generally, simple duplication is easier to deal with and allows

several architectural choices as we see next

Challenges of CED: Hardware Vs. Time Tradeoff

 Time Redundancy:

* Use the same hardware/code, but run it twice

* Negligible hardware overhead, but throughput is low

« Efficient design can hide some overhead

 DDR: Double data
rate.— operate on
both clock edge

* So you save clock
cycles and use
that for

redundancy

Pipelined

32-bit
SBox

==
| D1 D2
- b
R

|

01,02 L 0304 0102 L 0304 L
L 0102 0304 2 01,02 L 0304

N
i

Rows of State
Matrix of AES

1 {In
__/
Y .

b RegX b RegY]
s é
— 3
Out Error

Paulo Maistri and Regis Leveugle, IEEE TC 2008

Parity-based CED

» First generate check bits

» For each operation within Input text
encryption predict check bits [Check bit(s) Generator
» Periodically compare predicted
check bits to generated ones | |
e Predicting check bits for each Operation(s) Predictor(s)
operation - most complex step
> Should be compared to > Check bit(s) Generator +)-
duplication ' 4?
o Can be applied at different levels Intermediate or final Ciphertext Error Predicted check bits

word, byte, nibble

Source : Koren and Krishna,
Morgan-Kaufman 2007

Parity for AES

o Operations operate on bytes so byte-level parity is natural
o ShiftRows: Rotating the parity bits
o AddRoundKey: Add parity bits of state to those of key

o SubBytes: Expand Sbox to 256x9 — add output parity bit; to
propagate incoming errors (rather than having to check) expand to
512%x9 — put incorrect parity bit for inputs with incorrect parity

o MixColumns: The expressions are: o Transformation Input
Parity Bit(s) (input state matrix)

pO,j=p0,j@p2,j@p3,j@s(§,7} ® Sl(,7j)

=p, ®p, ®p, ®SV DS —
PrimPo SR, 1’(17) 2(’;) Parity Prediction Transformation
p2,j=p0,j@p1,j@p2,j@s2,j @S3,j
p3,j=p1,j@p2,j@p3,j@S3(,7j) @Sé?} v N\
where.(7) is the msb of Predicted Transformation Result
eSi ' Parity Bit(s) (output state matrix)

the stat’ej byte in position i,

Source : Koren and Krishna,
Morgan-Kaufman 2007

Parity-based CED

o Parity is just one example — can
be other codes as well..

o Fault coverage is not great, all
single-bit faults are detected

» There are some ways of using a
non-linear code to improve fault
coverage...

o Better linear codes can also be
used with higher d.

Input text
» Check bit(s) Generator
Y \
Operation(s) Predictor(s)
» Check bit(s) Generator =+)<
A\ j
\ 4
Intermediate or final Ciphertext Error Predicted check bits

Source : Koren and Krishna,
Morgan-Kaufman 2007

Infective Countermeasure

» | do not want to do the check...its just an if-else decision
e Someone can fault the check as well — so | infect...

Generic sketch exhibiting the Infection CM:

o 5, 5 the two States
o D the diffusion function (such as D(0) = 0)

/} / =

DY S

/ 4, A r (‘\._b/
PP Dy
A A 020 0% ote Yo
(= 77, : ;«%

\/'_‘\ %
5)':'\ﬁ—./:! -

Source : Lomne et. al., On the Need of Randomness in Fault
attack Countermeasures — Application to AES, FDTC 2012

Infective Countermeasure

» | do not want to do the check...its just an if-else decision
e Someone can fault the check as well — so | infect...

 BLFN is a Boolean function with single bit output — has to somehow encoded
to multi bits

‘ juepunpay \

| Jaydn \

Infective Countermeasure

Correct Computation Faulty Computation

W T

'@ ——m

g'“'””“m“f Zero Matrix Zero Matrix SMe Random Matrix
i

| ;aepunpau |

‘ ydn \

Infective Countermeasure

» Detection countermeasures can be bypassed with biased faults.

o Patranabis et. al. at COSADE 2014.
» The detection step leaks for random faults and combined side-channel.
BISICIHieUI - Saha et. al. in FDTC 2018.

AN

* Fournier et. al. and Joye et. al. : Deterministic infection function.
o Insecure [Lomne et. al. in FDTC 2012].
* Gierlichs et. al. : Randomized infective countermeasure.
o Insecure [Battistello et. al. in FDTC 2013 ;Tupsamudre et. al. in CHES 2014].
* Ghosh et. al. : Randomized infective countermeasure with non-linear mixing.
o Insecure [Banik et. al. INDOCRYPT 2015].
* Fournier et. al. and Joye et. al. : Randomized infection function.
o Insecure against control faults [Patranabis et. al. in HASS 2017].

AN

Re " * All the existing countermeasures are vulnerable against SIFA and FTA (invented by us).
cen

State J

Countermeasures in Short...

Countermeasure Taxonomy

|
|

System-level Cipher-level
|:: Analog
Digital v | | ,
Detection Infection Instruction-level SIFA and Combined

Countermeasures Countermeasures Countermeasures Countermeasures

Y. \J \J
Spatial Temporal Information
Redundancy Redundancy Redundancy

Let’s Break them All...

Attack 1: Time Redundancy Countermeasure

iqi Generate
Orlglna] Store Original o
Computation Result J
Equal

5 Compare

: Not Equal
Redundant l § ~a
Computation ! Suppress/

t Randomize

S.Patranabis, A.Chakraborty, P.H.Nguyen and D.Mukhopadhyay. A Biased Fault Attack on
the Time Redundancy Countermeasure for AES. In Proceedings of Constructive Side Channel
Analysis and Secure Design 2015 (COSADE 2015), Berlin, Germany, April 2015

Attack 1: Time Redundancy Countermeasure

éFaulﬂ

Original
Computation

Store Original
Result

gaultz

Redundant
Computation

Equal

Generate | !

Output E

Not Equal
Suppress/
Randomize S

Different Faults

Attack 1: Time Redundancy Countermeasure

%Faulﬂ

Original Store Original
Computation Result
gaulﬁ
Redundant
Computation

Equal

Generate Y
Output 5

Not Equal

Suppress/\
Randomize 5

Identical Faults

Attack 1: Time Redundancy Countermeasure

o Improving fault collision probability

- Enhancing the probability of identical faults in original and redundant
rounds

e TWO major aspects
- The size of the fault space
o The probability distribution of faults in the fault space
o A smaller fault space enhances the fault collision probability

e A non-uniform probability distribution of faults in the fault space also
enhances the fault collision probability

Attack 1: Uniform Random Faults

F1

— Fault for Original
Computation

?—

F2
— Fault for Redundant
Computation

(

_ Pr(F;=F,)=1N

Attack 1: Biased Faults

o A total of n faults possible under a fault model F
o Each fault fi has a probability of occurrence Prifi]
o LetV be the variance of the fault probability distribution

o Degree of Bias of a fault model increases with increase in V

Fault | Pr[f1] Pr[f7] Vv
Model

1 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0
2 0.225 0.200 0.175 0.125 0.100 0.075 0.050 0.050 0.004

3 0.500 0.250 0.125 0.050 0.050 0.025 0 0 0.026

Attack 1: Biased Faults

e With increase in bias, collision probability increases

e Long-story short: you can get exploitable faulty ciphertexts with high
probability, which you can use for attacks

-
f4
— -
Fq -
—> Fault for Original . .
Computation 4 :

—> Fault for Redundant —

Computation - >

Variance of fault probability distribution =V

Attack 1: With Statistical Fault Analysis (SFA)

C

Round 1

)

Round 2

Round n-1

Round n

J
y
}

}

C’1..N

C'1
DN ke
\ — K

Decrypt till the
Injection state

\4

255 [#{i|STH(CBK,) =i} 1 ’
SEI(Kg) =). P 256
i=0

K9 with highest SEI is the correct key

Attack 1: Biased Faults

P

P

Fault Variance Np(simulation) | Ng(experimental
Round | Fault Model Typed Toped Nc¢ Typé—l Type—)Q Tylge—l Type—Q)
SBU 9.5% 1072(3.6 1073 | 304.75 | 340.48 | 647.52 | 387.67 | 687.91
3 SBDBU 14x 1072|9.2x 1074 625.12 |1456.25| 1506.25 |1448.45| 1652.30
SBTBU [9.7x 1073[4.9 x 1074|1020.49|1815.60| 2315.40 [1974.86| 2395.83
SBQBU [3.2x1073|5.9x 1075|1878.55|7868.82 | 28038.54 | 8003.14 | 30201.41
SBU 0.2%1072(3.5x1073| 304.24 | 385.88 | 603.11 | 387.98 | 632.71
9 SBDBU |88 x1072(7.9 x 1074 | 624.65 | 641.18 | 1487.36 | 647.82 | 1556.69
' SBTBU [81x1072(6.7x1074| 832.32 | 873.56 | 2054.00 | 878.23 | 2489.25
SBQBU |(7.5x 1072 |3.5 x 1075 | 1328.22 | 1788.84.| 17239.10 ['1809.25 | 20145.66

Attack 1: Biased Faults

80

~
=
7

iphertext
/s

2
/

ions per ¢
2'

2 40
=
=
= 30
=
—
=
E 20
=]
=
z.

10

SBU
- SBDBU
SBTBU

- SBQBU

0
0 0.2

0.4

0.6
Variance

08 1 1.2
x 107

1200

1000

iphertext

800

1018 per ¢

i

600

jec

400

200

Number of fault in

SBU
SBDBU
SBTBU

SBQBU

S
Variance

Let’s Break with a Single Fault...

Statistical Ineffective Fault Analysis (SIFA)

 The correct state space under the influence of
faults is biased for biased faults.

« Example:

 (Consider the stuck-at-0 fault at the MSB
of a 4-bit state.

« If value of the faulted state belongs to the
first 8 table entries the ciphertext is
correct.

« The distribution of the state for correct
values only assumes 8 possible values
among 16.

« Works for many other biased fault models.
o SIFA utilizes correct ciphertexts for attack.

C. Dobraunig, M. Eichlseder, T. Korak, S. Mangard, F. Mendel, R. Primas,
“SIFA: Exploiting Ineffective Fault Inductions on Symmetric Cryptography”.

TCHES 2018

© Sayandeep Saha -- Indian Institute of Technology, Kharagpur

0000

0001

0010

0011

0100

0101

0110

o111

000

001

010

O11

o e [| | [[-

SIS I

Alal0
=0 =

0123456 7 8 9101112131415

State distribution w/o faults

A

>
>

01 2 3 45 6 7 8 9 1111213 1415

Correct State distribution with faults

Attack 1: With Statistical Fault Analysis (SFA)

C

Round 1

)

Round 2

Round n-1

Round n

J
y
}

}

C’1..N

C'1
DN ke
\ — K

Decrypt till the
Injection state

\4

255 [#{i|STH(CBK,) =i} 1 ’
SEI(Kg) =). P 256
i=0

K9 with highest SEI is the correct key

Why SIFA is Deadly?

 Most of the FA countermeasures mutes or P

randomizes the faulty ciphertexts. So, in many
practical situations one can never get faulty \
ciphertexts with a single fault injection.

 SIFA breaks this barrier. ENC ENC]| " ENC

* |neffective faults are feasible for both software l l l
and hardware implementations.

* |tis not typically limited to stuck-at faults.

\CT l /

CT

CT CT

© Sayandeep Saha -- Indian Institute of Technology, Kharagpur

Why SIFA is Deadly?

* Traditional detection/infection-based
countermeasures are not useful.

« Data-dependent Bias in the faults is the main
cause, which is the property of the fault.

Maintaining an unbiased state in the presence of
fault is tricky.

A Ray of Hope

The Transform-and-Encode Framework

« Aframework for realizing SIFA protection on block ciphers.
« Theoretically established security claims against SIFA.

« Uses state-of-the-art building blocks.

« Concrete realization on PRESENT called AntiSIFA.
 Practical security validation with laser fault injection.

© Sayandeep Saha -- Indian Institute of Technology, Kharagpur

The Transform-and-Encode Framework

P SW >
Root cause of SIFA: \— 71— S
« Data-dependent bias due to fault L — 7
injection Affected bits (w'=2)

Condition for SIFA

(32,5 € Xea : () # 02(1) |

© Sayandeep Saha -- Indian Institute of Technology, Kharagpur

The Transform-and-Encode Framework

Condition for SIFA Prevention

[V,y € Xeeq : Di(2) :p;j(y)]

No SIFA

X
00 01 10 11
0[T T 11
RTESE
TR
MESESE

L
/

SIFA Happens

00 01 10 11
017 1 1 1
s 5 5 7
0% % 5 %
1176 16 16 10

© Sayandeep Saha -- Indian Institute of Technology, Kharagpur

The Transform-and-Encode Framework

Condition for SIFA Prevention

[V,y € Xeeq : Di(2) :p;j(y)]

No SIFA

X
00 01 10 11
0[T T 11
RTESE
TR
MESESE

AN

L
/

SIFA Happens

-
-
-
(SN
ek
-
ek
ek

00
01
10
11

|0 00l— 00l o [
| 00l Q0] |

| © o0l 0lwo k|
EWMWMHMH

© Sayandeep Saha -- Indian Institute of Technology, Kharagpur

The Transform-and-Encode Framework

Randomized Domain Transform Algorithm Transform

« Parameterized security. Input: S € {0,1}",d € Zwhered <n
« SCA countermeasure masking Output: S*"* € {0,1}",r € {0,1}7

is a good domain transform. 1: [Sy -+ S 4 g
+ Bypassing n-bit masking 2: r er {0,1}¢

requires n-bit biased faults. 3: St « (DomTr([S; --- Sy].7)

4: Return (S'"%, r)

Algorithm DomTr

Input: [S; --- Sy4] € {0,1}",r € {0, 1}
Output: S*"* € {0,1}"

1: fori=1tod: S/ « (r; =1)? S; = S;
2: Stra «— [Sfra Séflra]

3: Return S'"¢

© Sayandeep Saha -- Indian Institute of Technology, Kharagpur

The Transform-and-Encode Framework

Transform: The Main Intuition

« Consider a stuck-at-0 fault
* The fault in ineffective with probability 0.5 for both state value 0 and 1.

\ \
/ 1 C—) Effective Fault / 1 =) Effective Fault
0 \\ 1 \\
\ \
0 = Ineffective Fault 0 =) Ineffective Fault

The Transform-and-Encode Framework

The Transform Operation

 Generate a Generate one
random bit r. random bit r for
. Comp|ement the each state bit.
plaintext and entire * Can be realized
encryption if r = 1. using masking.
* Protection against
single-bit SIFA
fault.

22-Sep-21

The Transform-and-Encode Framework

SIFA on Masking: Xo Xp

o Statistical bias can be
created even with unbiased
bit flips.

« The fault has to be injected at
the intermediate computation

of an S-Box. \D /.
 Highly feasible for bit-sliced —D»ej_;)
software implementations

and masked hardware with
intermediate registers.

C. Dobraunig, M. Eichlseder, H. Gross, S. Mangard, F. Mendel, R. Primas, “Statistical
Ineffective Fault Attacks on Masked AES with Fault Countermeasures”. ASIACRYPT 2018

© Sayandeep Saha -- Indian Institute of Technology, Kharagpur

N OO o A w NN~ O

~N O o A WO N~ O

N OO o A w N -~ O

~N O o A W N -~ O

The Transform-and-Encode Framework

Encode:
Error correction in a per- Algorlthm 4 EnCOde
share level.
Suggested after each non- Input: S € {0,1}", vy € Z
linear layer, i.e. S-Box. Output: Senc e 1o, 1}V|S\
Redundancy in correction 1: S¢™"9@«— ECC(S. ~v)
operation. 2 Return S¢"°¢ -

© Sayandeep Saha -- Indian Institute of Technology, Kharagpur

AntiSIFA Countermeasure

SIFA Countermeasure

* Perform masking and then perform :
correction on each share : Masked

« This we can prove that this strategy Redundant
prevents SIFA attacks I%"%"%"il I;.'II%II';IE:I lz'.ll':.ll.‘:ll':l I%II%II%.II‘.:I CS'BOX
. . t
. NO IneﬁeCtlve faUItS YYYY YYYY Y YVYY ---YYVY Ogiigklon
« Masking alone prevents biased Masked
faults. Redundant
- This strategy is also effective against I:":l%“é I:“:":'é I%":":“%I I:“:“:'é Linear Layer

FTA. EEEEBEEEEBEEEECEEEE]

* But it still does not end here...

© Sayandeep Saha -- Indian Institute of Technology, Kharagpur

The Transform-and-Encode Framework

AntiSIFA:; —. Rocumaant
« Transform-and-Encode for S-Box
Transform. IR
* First-order Threshold S S'a(liid
| : .
mpl§m§ntatlon for.masklng .:..:]é..:, .§¢¢.¢. '%":'é“i' ¢¢.¢.¢, |_|Lli?needaurnl_d:;;tr
* Duplication code witht =1 (y = 3) N

for error-correction.
* Ensures 3-bit security for fault

1.01e=4

injection outside S-Box (SIFA-1) " [— CorrectKey 8

« Ensures 1-bit SIFA security for 9 ——] j

attack inside the S-Box (SIFA-2) _os] 52|

- Validated using laser faults. o %_;’

« SCA security validated using TVLA. ol °)
"o #Co;'tgggi?oc'(i)plhertext;400b0'0 B as Tlr"gce Péi"r?t 2.0 ><1023.5

© Sayandeep Saha -- Indian Institute of Technology, Kharagpur

To Conclude

» Fault attack countermeasure is still an partially unsolved problem
« TaE does not solve it entirely, but shows the first pathway

« Fault+Side channel combined attacks are possible — more deadly and breaks some
variants of TaE.

« Fault Template Attack is another fundamental attack, which does not even need
correct ciphertexts to attack. It can also attack middle rounds of any block cipher

» Recently, we have developed countermeasures against FTA and combined attacks—
with cryptographic proofs

« But they are costly — we have still a long way to go...

* Let the cat and mouse game continue...

