
Implementation Security In
Cryptography

Lecture 11: Fault Attacks

Recap

• Till the last lecture
• Masking…

Today

• Fault Attacks

Faults in Our Life…

• Happens….
• We are all human being (Hope there is no AI agent in my class) :P
• We all learn from our faults….

• The learning is what I am looking for here

Faults in Our Life…

• The Sorcerer’s Apprenctice’s Guide to Fault Attacks, FDTC 2006

Faults in Our Life…

• The Sorcerer’s Apprenctice’s Guide to Fault Attacks, FDTC 2006

Faults in Our Life…

• The Sorcerer’s Apprenctice’s Guide to Fault Attacks, FDTC 2006

Faults in Our Life…

• The Sorcerer’s Apprenctice’s Guide to Fault Attacks, FDTC 2006

Faults in Our Life…

• The Sorcerer’s Apprenctice’s Guide to Fault Attacks, FDTC 2006

Faults in Our Life…

• The Sorcerer’s Apprenctice’s Guide to Fault Attacks, FDTC 2006

Faults in Our Life…

• The Sorcerer’s Apprenctice’s Guide to Fault Attacks, FDTC 2006

Faults in Our Crypto…

● Introduction of faults in the normal execution of cryptographic
algorithms and analysis of faulty output to obtain the key

● First conceived in 1996 by Boneh, Demillo and Lipton
● E. Biham developed Differential Fault Analysis (DFA) of DES
● Today there are numerous examples of fault analysis of block

ciphers such as AES under a variety of fault models and fault
injection techniques

● Popular Fault Injection Techniques – Clock Glitches, Voltage
Glitches, EM and Optical Injection Techniques

What Faults are Up To?

Faults in Our Crypto…
DevicesSmall World Big World

• Tight control on injection timing
• You can hit the variable you want at a

specific instant
• Multi-bit — but can be made single-bit too
• Biased fault distribution
• Mainly transient
• Multiple injection challenging

• Timing can be controlled but precision is less
• Target variable must be in RAM for quite

sometime
• Single-bit — fairly well controllable
• Mainly persistent
• Multiple injection is easier

Laser-FI

EM-FIVoltage-Glitch Clock-Glitch

Chipwhisperer

Row-Hammer

A Break From AES…RSA Signature
• Let’s talk RSA
• Public key algorithm, — Encryption and Signature

• We talk about signature.
• Simple Idea:

• Alice generates a secret and a public key.
• Gives the public key to “Public”
• Signs a message M with secret key and generates signature C
• Everyone with the public key can verify that:

• The C is a valid signature of M
• C is generated by Alice only and nobody else

RSA Signature in Brief…
• Alice generates two large primes , and computes

• It also finds and , where , this is called Eular’s totient function and
, as , are primes.

• , , is secret key

• is the public key

• Sign: , compute , and returns

• Verify: Check if , where

• I have omitted some crucial details here for simplicity. But that’s not for what we are going to
explain..

• E.g, m is not the message but is a hash of the message..also there are some paddings
needed for security…

p q N = pq
e d ed ≡ 1 mod ϕ(N) ϕ(N)

ϕ(N) = (p − 1)(q − 1) p q
p q d
N, e

m ∈ ℤ*n s = md mod N s | |m
m′ = = m m′ = se mod N

RSA-CRT
• CRT stands for Chinese Reminder Theorem — check it out!!!
• RSA-CRT is a performance optimisation trick…

Attacking RSA-CRT…
• Again, we want to find the secret key…So attack the signing process..
• Let’s say, for a message m, I can repeat the signature generation

process.
• What I do:

• Generate the correct signature

• On the same message generate a faulty signature

• Fault happens during the computation of the sign.

• The fault only corrupts the computation of or , but not both

s = 𝗌𝗂𝗀𝗇(m, d)
̂s = 𝗌𝗂𝗀𝗇(m, d)

sp sq

Attacking RSA-CRT…
• Let

• Let

• Let

• Now, observe that, since

• is divisible by

• So, , and

• Ok, you got p, you know N, so you know q — game over!!!
• Attack is also possible if you do not use CRT — analysis is slightly different

̂s = a × sp + b × ̂sq mod N

s = a × sp + b × sq mod N

Δ = s − ̂s = b(sq − ̂sq)

b ≡ 0 mod p
Δ = b(sq − ̂sq) p

Δ = kp gcd(s − ̂s, n) = p

 Let There Be Faults: Fault Model

• Key component of a fault attack
• Attack procedure changes

according to the fault model
• Random localized faults

o Bit/nibble/byte fault
o Most general model

• Biased faults
o Device-dependent model

• Instruction skip/modify.
• Constant fault

o Stuck-at-0/1
o Persistant fault

In a fault space of
size 256, only 8

faults occur in 98%
of the total
injections!!!

ldi r1 0;
ld r1 #M1
ldi r2 0
ld r2 #M2
add r1 r2
str r1

ldi r1 0;
nop
ldi r2 0
ld r2 #M2
add r1 r2
str r1

In a fault space of
size 256, only 8

faults occur in 98%
of the total
injections!!!

The AES Story…

 Looking Inside AES Once Again
AES

• Nonlinear Boolean Function

• Finite field inversion followed by

affine map

• Also implemented as a table

• Source of confusion

1 byte

s00
s10
s20
s20

s01
s11
s21
s31

s02
s12
s22
s32

s03
s13
s23
s33

k00
k10
k20
k20

k01
k11
k21
k31

k02
k12
k22
k32

k03
k13
k23
k33

State

1. SubBytes

2. ShiftRows
• Linear Boolean Function

• Left circular shift of rows

• Source of diffusion 3. MixColumns

• Linear Boolean Function

• Multiplies each column by

a constant matrix in GF(28)

• Source of diffusion

4. AddRoundKey

s00
s10
s20
s20

s01
s11
s21
s31

s02
s12
s22
s32

s03
s13
s23
s33

k00
k10
k20
k20

k01
k11
k21
k31

k02
k12
k22
k32

k03
k13
k23
k33

⊕ • Linear Boolean Function

• XOR the state with a round key

The AES Story…
• The attacker can corrupt one

specific round operation of AES.
• One of multiple bytes of the AES

state gets corrupted.
• Then what happens?
• We also assume that we have

both correct and faulty ciphertext
for the same plaintext…

• Where to inject the fault:
• In round functions
• In key schedule

Let there be a fault at 9th round

2f′ = S−1(x1 ⊕ k1) ⊕ S−1(x′ 1 ⊕ k1)
f′ = S−1(x8 ⊕ k8) ⊕ S−1(x′ 8 ⊕ k8)
f′ = S−1(x11 ⊕ k11) ⊕ S−1(x′ 11 ⊕ k11)

3f′ = S−1(x14 ⊕ k14) ⊕ S−1(x′ 14 ⊕ k14)

Let the correct ciphertext be

The faulty ciphertext be

x = (x1, x2, ⋯x16)

x′ = (x′ 1, x′ 2, ⋯x′ 16)

Let there be a fault at 9th round
2f′ = S−1(x1 ⊕ k1) ⊕ S−1(x′ 1 ⊕ k1)

f′ = S−1(x8 ⊕ k8) ⊕ S−1(x′ 8 ⊕ k8)
f′ = S−1(x11 ⊕ k11) ⊕ S−1(x′ 11 ⊕ k11)

3f′ = S−1(x14 ⊕ k14) ⊕ S−1(x′ 14 ⊕ k14)

● On an average there is one solution to the equation: —
why?
● Two possible solutions can be and . In that case .
● If not, then we can transform this to — which (may) have 2

more solutions
● If or , then the equation can have two more solutions in ,

depending on is even or odd. Solutions have form , with being a
field () element. — depends on some deep finite field tricks…

So, it can have 0, 2, or 4 solutions — on average 1 solutions, we observed….
● Thus for one value of f’ there is 1 value for k1, k8, k11, k14 which satisfies the equations.

● Thus for all the 28 values of f’, there are 28 values for k1, k8, k11, k14.

● Thus the total size of AES key is 232

S−1(X) ⊕ S−1(X + α) = β

X = 0 X = α β = α−1

βx2 + αβx + α = 0

X = 0 X = α GF(2n)
n {0,α, eα, e2α} e

GF(2n)

Let there be a fault at 9th round

2f′ = S−1(x1 ⊕ k1) ⊕ S−1(x′ 1 ⊕ k1)
f′ = S−1(x8 ⊕ k8) ⊕ S−1(x′ 8 ⊕ k8)
f′ = S−1(x11 ⊕ k11) ⊕ S−1(x′ 11 ⊕ k11)

3f′ = S−1(x14 ⊕ k14) ⊕ S−1(x′ 14 ⊕ k14)

● With one faulty cipher text:
◦ Number of possible values per 4 bytes of

the key is around 28.
◦ There are 232 possible candidates for 128

bits of the AES key.
◦ Brute force key is thus possible!

 Let’s Improve…8th Round Injection

1 1
1 1 1 1 1 12 () ()F S c k S c A k− −= ⊕ ⊕ ⊕ ⊕

1 1
1 5 5 5 5 5() ()F S c k S c A k− −= ⊕ ⊕ ⊕ ⊕

1 1
1 9 9 9 9 9() ()F S c k S c A k− −= ⊕ ⊕ ⊕ ⊕

1 1
1 13 13 13 13 133 () ()F S c k S c A k− −= ⊕ ⊕ ⊕ ⊕

Let’s Improve…8th Round Injection…
● Search space reduced in two phases.
● First phase:

➢Find the 232 candidates of 10th round key.
● Second phase

➢ Deduce four differential equation from differences {2f’,f’,f’,3f’}.
➢ Reduce the 232 candidates to 28 using the four differential equation.

Let’s Improve…8th Round Injection…

AES Key Schedule
● AES key schedule is invertible

Rcon

Let’s Improve…8th Round Injection…

K9 = K10 = {k1, k2, ⋯k16}

● AES key schedule is invertible

Let’s Improve…8th Round Injection…

8th Round Injection…How does the Equation Look?
● We have 4 such equations

Let’s Improve…8th Round Injection…
● Time complexity of previous attack:
● Time complexity of this attack:
● Just with one fault injection!!!

O(232)
O(28)

Diagonal Fault Attack
● Multi Byte Faults (more practical)
◦ Attacker induces fault at the input of the 8th

round in some bytes
◦ Fault value should be non-zero but can be

arbitrary

Diagonal Fault Attack
Diagonal: A diagonal is a set of four bytes of the
state matrix,
where diagonal i is defined as follows:

According to the above definition and with
reference to the state matrix of AES
(refer figure) we obtain the following four
diagonals.

Diagonal Fault Attack

● M0: One Diagonal affected.
● M1: Two Diagonals affected.
● M2: Three Diagonals affected.
● M3: Four Diagonals affected.

Diagonal Fault Attack

● Faults induced in Diagonal D0 at the
input of 8th round AES are all equivalent.

Diagonal Fault Attack

Diagonal Fault Attack

• There are in total 4 such systems of equations for a diagonal D0.
• Each system of equation gives 28 keys on an average.
• AES key size gets reduced to 232.

Diagonal Fault Attack: 2 Diagonals Corrupted

Diagonal Fault Attack: 2 Diagonals Corrupted

● The equation reduces the space of the 4
key bytes of AES to 216

● Two faulty ciphertexts reduce it to a unique
value on an average (experimental result).

Diagonal Fault Attack: 3 Diagonals Corrupted

Diagonal Fault Attack: 3 Diagonals Corrupted

● The equation reduces the space of the 4 key
bytes of AES to 224

● Four faulty ciphertexts reduce it to a unique
value on an average (experimental result).

Diagonal Fault Attack: Practical Injection

Going Beyond AES…Let’s Try DES

Source: Wikipedia

Going Beyond AES…Let’s Try DES

● The Sorcerer’s Apprenctice’s Guide to Fault Attacks, FDTC 2006

Simplify

Going Beyond AES…Let’s Try DES

● The Sorcerer’s Apprenctice’s Guide to Fault Attacks, FDTC 2006

Going Beyond AES…Let’s Try DES

● The Sorcerer’s Apprenctice’s Guide to Fault Attacks, FDTC 2006

After Fault…

Going Beyond AES…Let’s Try DES

● The Sorcerer’s Apprenctice’s Guide to Fault Attacks, FDTC 2006

After Fault…

Calculate the differential…

DES Attack
◦ Note that here both input and output differentials are

known…
◦ Unlike AES where only a pattern of the input differentials

are known
◦ So, you can solve the equations for k as the only unknown
◦ Note that DES S-Boxes are …so 6 bits has to be

guessed simultaneously…
◦ You can also use the differential distribution table

mentioned in the last class to find the number of solutions
for each S-Box

6 × 4

DES Attack
◦ Each equation gives 4-5 solutions for the key on average…
◦ So, for 8 S-boxs, roughly () suggestions remain for

the last round key.
◦ Another issue with DES — although the key size is 56,

round key size is 48.
◦ So reduces to — total master key can be found with

 exhaustive search…

218 (5)8

248 218

218 × 28 = 226

Using Multiple Ciphertexts
● Common strategy for reducing attack complexity

● Applies irrespective of AES or DES or any
other cipher..

● Let’s try for AES…
● In general, multiplying the number of faulty

ciphertext directly reduces the final key
space size and therefore the complexity of
the exhaustive search

 Let’s Improve…8th Round Injection

1 1
1 1 1 1 1 12 () ()F S c k S c A k− −= ⊕ ⊕ ⊕ ⊕

1 1
1 5 5 5 5 5() ()F S c k S c A k− −= ⊕ ⊕ ⊕ ⊕

1 1
1 9 9 9 9 9() ()F S c k S c A k− −= ⊕ ⊕ ⊕ ⊕

1 1
1 13 13 13 13 133 () ()F S c k S c A k− −= ⊕ ⊕ ⊕ ⊕

 Let’s Improve…8th Round Injection
● For 1 column, a single injection reduces the key

space from to .
● is basically the expected number of remaining

subkeys
● This is done by satisfying the equation system.
● The probability of a given (4-byte) subkey satisfying

this equation is .

● Now, consider another fault injection
● We can take intersections between the key

suggestions provided by these two injections…
● For 2-injections the probability will become .
● Expected number of remain subkeys:

 < 1 — So practically only one
subkey will remain

232 28

28

28

232
= 2−24

(2−24)2

232 × (2−24)2

1 1
1 1 1 1 1 12 () ()F S c k S c A k− −= ⊕ ⊕ ⊕ ⊕

1 1
1 5 5 5 5 5() ()F S c k S c A k− −= ⊕ ⊕ ⊕ ⊕

1 1
1 9 9 9 9 9() ()F S c k S c A k− −= ⊕ ⊕ ⊕ ⊕

1 1
1 13 13 13 13 133 () ()F S c k S c A k− −= ⊕ ⊕ ⊕ ⊕

 A General Model for Differential Fault Attacks

● Identify a distinguisher:
● Based on fault patterns…
● Example: For AES, 8th round injection, the distinguisher is the linear pattern observed due to fault

propagation
● For DES, the distinguisher is — a known value and part of ciphertext!!!
● Distiguisher is mostly an input differential .
● Always try to form equations of the form , where is a (part of) the

distinguisher..
● Divide-and Conquer: Find a distinguisher evaluation strategy so that you do not need to guess a lot of keys

together.
● For AES attacks, this distinguisher evaluation complexity was — we have a divide-and conquer strategy

which guesses 32-bits of key at once (independently for 4 columns)
● For DES it is

● Calculate the Remaining Key Space: Estimate the number of solutions to your equation system. That gives
you the number of remaining keys after the attack. You have to search these keys exhaustively… 

R16 ⊕ R16′

Δi
S−1(X) ⊕ S−1(X + α) = β β

236

29

© Sayandeep Saha -- Indian Institute of Technology, Kharagpur

 Fault Attacks (FA)

• Key component of a fault attack
• Attack procedure changes

according to the fault model
• Random localized faults

o Bit/nibble/byte fault
o Most general model

• Biased faults
o Device-dependent model

• Instruction skip/modify.
• Constant fault

o Stuck-at-0/1

Fault Models

In a fault space of
size 256, only 8

faults occur in 98%
of the total
injections!!!

ldi r1 0;
ld r1 #M1
ldi r2 0
ld r2 #M2
add r1 r2
str r1

ldi r1 0;
nop
ldi r2 0
ld r2 #M2
add r1 r2
str r1

In a fault space of
size 256, only 8

faults occur in 98%
of the total
injections!!!

 Fault Attacks (FA)

• Inject fault in the device during encryption/decryption.
• Analyze the faulty response to extract the secret

• Differential fault attacks.
• Biased fault attacks (SFA/SIFA).

P

ENC

CT

P

ENC

CTf

DFA

…

…

SFA/SIFA

P1

ENC

CTf1

P2

ENC

CTf2

Pn

ENC

CTfn

…

 Statistical Fault Analysis (SFA)

…

…

SFA/SIFA

P1

ENC

CTf1

P2

ENC

CTf2

Pn

ENC

CTfn

…

The Key Idea:
• Biased fault injection

makes the state
statistically biased.

• This bias is visible only for
correct key guess.

• Such attacks require
several faulty ciphertexts

0 0 0
0 0 1
0 1 0
0 1 1
1 0 0
1 0 1
1 1 0
1 1 1

Correct State Faulty State

0 0 0
0 0 0
0 1 0
0 1 0
1 0 0
1 0 0
1 1 0
1 1 0

Example: Consider a stuck-at-0
fault at the LSB bit of the
intermediate state. The faulty state
can only assume even values.

Round 1

Round 2

Round n-1

Round n

P1…N

C’1…N

C’1…N

Kg

Decrypt till the
injection state

𝑆𝐸𝐼(𝐾𝑔) =
255

∑
𝑖=0 (

#{𝑡 |𝑆(𝐾𝑔) = 𝑖}
𝑛

−
1

256)
2

Kg with highest SEI is the correct key

 Statistical Fault Analysis (SFA)

#{i |S−1(C ⊕ Kg) = i}

Round 1

Round 2

Round n-1

Round n

Faults make the distribution of the state
statistically biased at the injection point.

The bias become visible only if the faulty ciphertexts
are partially decrypted with the correct key guess.
For wrong guesses the bias disappears.

P1…N

C’1…N

22-Sep-21

 Statistical Fault Analysis (SFA)

• Similar to SCA attacks in some sense…
• Key reason: The bias is only observable while the key guess is correct.
• Interesting fact: You do not need to know the exact bias

• The SEI metric does not require exact statistical distribution of the
bias.

• Issues: Can only be applied at the last few rounds. Not like DFA which can
also be applied at the middle rounds.

 Statistical Fault Analysis (SFA)

• Similar to SCA attacks in some sense…
• Key reason: The bias is only observable while the key guess is correct.
• Interesting fact: You do not need to know the exact bias

• The SEI metric does not require exact statistical distribution of the
bias.

• Issues: Can only be applied at the last few rounds. Not like DFA which can
also be applied at the middle rounds.

Today

• Fault attack Countermeasures
• Breaking and fixing FA countermeasures…

 It’s just Redundant Computation

• Do same computation several times.

• We call it redundant branches of computation.

• When output/internal computation does not match it
simply outputs a random value or outputs nothing…

• Also called concurrent error detection (CED)
• Assumption: The adversary cannot fault all the

branches with same valued fault.

• Motivated by ideas from classical fault tolerance

literature.

• Error-detection/Correction codes.

…

ENC

CT

ENC

CT

ENC

CT

…

= =

P

CT

 What is an Error-Detection/Correction Code

• Adds some redundancy in data so a fixed number of

erroneous bits can be detected/corrected.

…

ENC

CT

ENC

CT

ENC

CT

…

= =

P

CT

1

2

3

 What is an Error-Detection/Correction Code

4

• What is the advantage of systematic code?

• Each message is padded with check bits where

•

• So, you can process the message and check bits separately.

x x′ x′ = x . P
c = < x |x′ >

 What is an Error-Detection/Correction Code

• Example 1:

• Simply repeat your computation times.

• It turns into a code .

• Duplication:

• Triple modular redundancy:

• Overhead: times extra computation

λ
[λk, k, λ]

λ = 2
λ = 3

λ

• Example 2:

• Add a parity bit as . — simply compute the XOR of all bits

• code, with error-detection capability 1 bits. — no correction

• To check the received word ,

x′ = ⊕k x

[k + 1,k,2]
y ⊕k y = ⊕k x

 Challenges of CED: Hardware Vs. Time Tradeoff

• Hardware Redundancy:

• Keep separate hardware for the predictor

• Almost 100% overhead for simple duplication

• Parity is sightly better, but for many other codes the overhead can

be similar to duplication

• Generally, simple duplication is easier to deal with and allows
several architectural choices as we see next

 Challenges of CED: Hardware Vs. Time Tradeoff
• Time Redundancy:

• Use the same hardware/code, but run it twice

• Negligible hardware overhead, but throughput is low

• Efficient design can hide some overhead

• DDR: Double data

rate.— operate on

both clock edge

• So you save clock

cycles and use

that for

redundancy

 Parity-based CED

● First generate check bits
● For each operation within

encryption predict check bits
● Periodically compare predicted

check bits to generated ones
● Predicting check bits for each

operation - most complex step
◦ Should be compared to

duplication
● Can be applied at different levels

–
word, byte, nibble

Source : Koren and Krishna,
Morgan-Kaufman 2007

 Parity for AES

● Operations operate on bytes so byte-level parity is natural
● ShiftRows: Rotating the parity bits
● AddRoundKey: Add parity bits of state to those of key
● SubBytes: Expand Sbox to 256×9 – add output parity bit; to

propagate incoming errors (rather than having to check) expand to
512×9 – put incorrect parity bit for inputs with incorrect parity

● MixColumns: The expressions are:

 where is the msb of
 the state byte in position i,j

)7(
,0

)7(
,3,3,2,1,3

)7(
,3

)7(
,2,2,1,0,2

)7(
,2

)7(
,1,3,1,0,1

)7(
,1

)7(
,0,3,2,0,0

jjjjjj

jjjjjj

jjjjjj

jjjjjj

SSpppp

SSpppp

SSpppp

SSpppp

⊕⊕⊕⊕=

⊕⊕⊕⊕=

⊕⊕⊕⊕=

⊕⊕⊕⊕=

)7(
, jis

Transformation

Transformation Input
(input state matrix)

Transformation Result
(output state matrix)

Parity Bit(s)

Parity Prediction

Predicted
Parity Bit(s)

Source : Koren and Krishna,
Morgan-Kaufman 2007

 Parity-based CED

● Parity is just one example — can
be other codes as well..

● Fault coverage is not great, all
single-bit faults are detected

● There are some ways of using a
non-linear code to improve fault
coverage…

● Better linear codes can also be
used with higher d.

Source : Koren and Krishna,
Morgan-Kaufman 2007

 Infective Countermeasure

● I do not want to do the check…its just an if-else decision
● Someone can fault the check as well — so I infect…

Source : Lomne et. al. , On the Need of Randomness in Fault
attack Countermeasures – Application to AES, FDTC 2012

 Infective Countermeasure

● I do not want to do the check…its just an if-else decision
● Someone can fault the check as well — so I infect…
● BLFN is a Boolean function with single bit output — has to somehow encoded

to multi bits

 Infective Countermeasure

Correct Computation Faulty Computation

 Infective Countermeasure

Detection

• Detection countermeasures can be bypassed with biased faults.
o Patranabis et. al. at COSADE 2014.

• The detection step leaks for random faults and combined side-channel.
o Saha et. al. in FDTC 2018.

Infection

• Fournier et. al. and Joye et. al. : Deterministic infection function.
o Insecure [Lomne et. al. in FDTC 2012].

• Gierlichs et. al. : Randomized infective countermeasure.
o Insecure [Battistello et. al. in FDTC 2013 ;Tupsamudre et. al. in CHES 2014].

• Ghosh et. al. : Randomized infective countermeasure with non-linear mixing.
o Insecure [Banik et. al. INDOCRYPT 2015].

• Fournier et. al. and Joye et. al. : Randomized infection function.
o Insecure against control faults [Patranabis et. al. in HASS 2017].

Recent
State

• All the existing countermeasures are vulnerable against SIFA and FTA (invented by us).

 Countermeasures in Short…

Let’s Break them All…

 Attack 1: Time Redundancy Countermeasure

S.Patranabis, A.Chakraborty, P.H.Nguyen and D.Mukhopadhyay. A Biased Fault Attack on
the Time Redundancy Countermeasure for AES. In Proceedings of Constructive Side Channel
Analysis and Secure Design 2015 (COSADE 2015), Berlin, Germany, April 2015

 Attack 1: Time Redundancy Countermeasure

 Attack 1: Time Redundancy Countermeasure

 Attack 1: Time Redundancy Countermeasure

● Improving fault collision probability
◦ Enhancing the probability of identical faults in original and redundant

rounds
● Two major aspects
◦ The size of the fault space
◦ The probability distribution of faults in the fault space

● A smaller fault space enhances the fault collision probability
● A non-uniform probability distribution of faults in the fault space also

enhances the fault collision probability

 Attack 1: Uniform Random Faults

 Attack 1: Biased Faults

● A total of n faults possible under a fault model F
● Each fault fi has a probability of occurrence Pr[fi]
● Let V be the variance of the fault probability distribution
● Degree of Bias of a fault model increases with increase in V

Fault
Model

Pr[f1] Pr[f2] Pr[f3] Pr[f4] Pr[f5] Pr[f6] Pr[f7] Pr[f8] V

1 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0
2 0.225 0.200 0.175 0.125 0.100 0.075 0.050 0.050 0.004

3 0.500 0.250 0.125 0.050 0.050 0.025 0 0 0.026

 Attack 1: Biased Faults

● With increase in bias, collision probability increases
● Long-story short: you can get exploitable faulty ciphertexts with high

probability, which you can use for attacks

Round 1

Round 2

Round n-1

Round n

P1…N

C’1…N

C’1…N

Kg

Decrypt till the
injection state

𝑆𝐸𝐼(𝐾𝑔) =
255

∑
𝑖=0 (

#{𝑡 |𝑆(𝐾𝑔) = 𝑖}
𝑛

−
1

256)
2

Kg with highest SEI is the correct key

 Attack 1: With Statistical Fault Analysis (SFA)

#{i |S−1(C ⊕ Kg) = i}

 Attack 1: Biased Faults

Useful
ciphertexts

Total Fault
Injections

 Attack 1: Biased Faults

Let’s Break with a Single Fault…

© Sayandeep Saha -- Indian Institute of Technology, Kharagpur

 Statistical Ineffective Fault Analysis (SIFA)

• The correct state space under the influence of
faults is biased for biased faults.

• Example:
• Consider the stuck-at-0 fault at the MSB

of a 4-bit state.
• If value of the faulted state belongs to the

first 8 table entries the ciphertext is
correct.

• The distribution of the state for correct
values only assumes 8 possible values
among 16.

• Works for many other biased fault models.
• SIFA utilizes correct ciphertexts for attack.

State distribution w/o faults

Correct State distribution with faults

C. Dobraunig, M. Eichlseder, T. Korak, S. Mangard, F. Mendel, R. Primas,
“SIFA: Exploiting Ineffective Fault Inductions on Symmetric Cryptography”.
TCHES 2018

Round 1

Round 2

Round n-1

Round n

P1…N

C’1…N

C’1…N

Kg

Decrypt till the
injection state

𝑆𝐸𝐼(𝐾𝑔) =
255

∑
𝑖=0 (

#{𝑡 |𝑆(𝐾𝑔) = 𝑖}
𝑛

−
1

256)
2

Kg with highest SEI is the correct key

 Attack 1: With Statistical Fault Analysis (SFA)

#{i |S−1(C ⊕ Kg) = i}

© Sayandeep Saha -- Indian Institute of Technology, Kharagpur

 Why SIFA is Deadly?

• Most of the FA countermeasures mutes or
randomizes the faulty ciphertexts. So, in many
practical situations one can never get faulty
ciphertexts with a single fault injection.

• SIFA breaks this barrier.
• Ineffective faults are feasible for both software

and hardware implementations.
• It is not typically limited to stuck-at faults.

…

ENC

CT

ENC

CT

ENC

CT

…

= =

P

CT

 Why SIFA is Deadly?

• Traditional detection/infection-based
countermeasures are not useful.

• Data-dependent Bias in the faults is the main
cause, which is the property of the fault.
Maintaining an unbiased state in the presence of
fault is tricky. …

ENC

CT

ENC

CT

ENC

CT

…

= =

P

CT

A Ray of Hope

© Sayandeep Saha -- Indian Institute of Technology, Kharagpur

 The Transform-and-Encode Framework

• A framework for realizing SIFA protection on block ciphers.
• Theoretically established security claims against SIFA.
• Uses state-of-the-art building blocks.
• Concrete realization on PRESENT called AntiSIFA.
• Practical security validation with laser fault injection.

© Sayandeep Saha -- Indian Institute of Technology, Kharagpur

 The Transform-and-Encode Framework

Root cause of SIFA:
• Data-dependent bias due to fault

injection

Ineffective Transition Probability

Ineffective Transition Probability of a StateCondition for SIFA

© Sayandeep Saha -- Indian Institute of Technology, Kharagpur

 The Transform-and-Encode Framework

Condition for SIFA Prevention

No SIFA SIFA Happens

© Sayandeep Saha -- Indian Institute of Technology, Kharagpur

 The Transform-and-Encode Framework

Condition for SIFA Prevention

No SIFA SIFA Happens

© Sayandeep Saha -- Indian Institute of Technology, Kharagpur

 The Transform-and-Encode Framework

Randomized Domain Transform
• Parameterized security.
• SCA countermeasure masking

is a good domain transform.
• Bypassing n-bit masking

requires n-bit biased faults.

Transform: The Main Intuition

0

1 0

• Consider a stuck-at-0 fault
• The fault in ineffective with probability 0.5 for both state value 0 and 1.

1
Encoding

0

1

0

Effective Fault

Ineffective Fault

1

1

0

Effective Fault

Ineffective Fault

 The Transform-and-Encode Framework

22-Sep-21

The Transform Operation

d = 1

• Generate a
random bit r.

• Complement the
plaintext and entire
encryption if r = 1.

• Protection against
single-bit SIFA
fault.

d = n

• Generate one
random bit r for
each state bit.

• Can be realized
using masking.

 The Transform-and-Encode Framework

© Sayandeep Saha -- Indian Institute of Technology, Kharagpur

 SIFA on Masking:
• Statistical bias can be

created even with unbiased
bit flips.

• The fault has to be injected at
the intermediate computation
of an S-Box.

• Highly feasible for bit-sliced
software implementations
and masked hardware with
intermediate registers.

 The Transform-and-Encode Framework

C. Dobraunig, M. Eichlseder, H. Gross, S. Mangard, F. Mendel, R. Primas, “Statistical
Ineffective Fault Attacks on Masked AES with Fault Countermeasures”. ASIACRYPT 2018

© Sayandeep Saha -- Indian Institute of Technology, Kharagpur

 Encode:
• Error correction in a per-

share level.
• Suggested after each non-

linear layer, i.e. S-Box.
• Redundancy in correction

operation.

 The Transform-and-Encode Framework

© Sayandeep Saha -- Indian Institute of Technology, Kharagpur

 AntiSIFA Countermeasure

SIFA Countermeasure
• Perform masking and then perform

correction on each share
• This we can prove that this strategy

prevents SIFA attacks
• No ineffective faults
• Masking alone prevents biased

faults.
• This strategy is also effective against

FTA.
• But it still does not end here…

© Sayandeep Saha -- Indian Institute of Technology, Kharagpur

 AntiSIFA:
• Transform-and-Encode for

PRESENT
• First-order Threshold

Implementation for masking
• Duplication code with t = 1 (γ = 3)

for error-correction.
• Ensures 3-bit security for fault

injection outside S-Box (SIFA-1)
• Ensures 1-bit SIFA security for

attack inside the S-Box (SIFA-2)
• Validated using laser faults.
• SCA security validated using TVLA.

 The Transform-and-Encode Framework

 To Conclude

• Fault attack countermeasure is still an partially unsolved problem
• TaE does not solve it entirely, but shows the first pathway
• Fault+Side channel combined attacks are possible — more deadly and breaks some

variants of TaE.
• Fault Template Attack is another fundamental attack, which does not even need

correct ciphertexts to attack. It can also attack middle rounds of any block cipher
• Recently, we have developed countermeasures against FTA and combined attacks—

with cryptographic proofs
• But they are costly — we have still a long way to go…
• Let the cat and mouse game continue…

