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Lecture 11: Fault Attacks



Recap

• Till the last lecture 
• Masking…



Today

• Fault Attacks



Faults in Our Life…

• Happens…. 
• We are all human being (Hope there is no AI agent in my class) :P 
• We all learn from our faults…. 

• The learning is what I am looking for here



Faults in Our Life…

• The Sorcerer’s Apprenctice’s Guide to Fault Attacks, FDTC 2006
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Faults in Our Crypto…

● Introduction of faults in the normal execution of cryptographic 
algorithms and analysis of faulty output to obtain the key 

● First conceived in 1996 by Boneh, Demillo and Lipton  
● E. Biham developed Differential Fault Analysis (DFA) of DES 
● Today there are numerous examples of fault analysis of block 

ciphers such as AES under a variety of fault models and fault 
injection techniques 

● Popular Fault Injection Techniques – Clock Glitches, Voltage 
Glitches, EM and Optical Injection Techniques



What Faults are Up To?



Faults in Our Crypto…
DevicesSmall World Big World

• Tight control on injection timing 
• You can hit the variable you want at a 

specific instant 
• Multi-bit — but can be made single-bit too 
• Biased fault distribution 
• Mainly transient 
• Multiple injection challenging

• Timing can be controlled but precision is less 
• Target variable must be in RAM for quite 

sometime 
• Single-bit — fairly well controllable 
• Mainly persistent 
• Multiple injection is easier

Laser-FI

EM-FIVoltage-Glitch Clock-Glitch

Chipwhisperer

Row-Hammer



A Break From AES…RSA Signature
• Let’s talk RSA 
• Public key algorithm, — Encryption and Signature 

• We talk about signature. 
• Simple Idea:  

• Alice generates a secret and a public key. 
• Gives the public key to “Public” 
• Signs a message M with secret key and generates signature C 
• Everyone with the public key can verify that: 

• The C is a valid signature of M 
• C is generated by Alice only and nobody else



RSA Signature in Brief… 
• Alice generates two large primes ,  and computes  

• It also finds  and , where , this  is called Eular’s totient function and 
, as ,  are primes. 

• , ,  is secret key 

•  is the public key 

• Sign: , compute , and returns  

• Verify:  Check if , where  

• I have omitted some crucial details here for simplicity. But that’s not for what we are going to 
explain.. 

• E.g, m is not the message but is a hash of the message..also there are some paddings 
needed for security…

p q N = pq
e d ed ≡ 1 mod ϕ(N ) ϕ(N )

ϕ(N ) = (p − 1)(q − 1) p q
p q d
N, e

m ∈ ℤ*n s = md mod N s | |m
m′ = = m m′ = se mod N



RSA-CRT
• CRT stands for Chinese Reminder Theorem — check it out!!! 
• RSA-CRT is a performance optimisation trick…



Attacking RSA-CRT…
• Again, we want to find the secret key…So attack the signing process.. 
• Let’s say, for a message m, I can repeat the signature generation 

process.  
• What I do: 

• Generate the correct signature  

• On the same message generate a faulty signature  

• Fault happens during the computation of the sign. 

• The fault only corrupts the computation of  or , but not both

s = 𝗌𝗂𝗀𝗇(m, d)
̂s = 𝗌𝗂𝗀𝗇(m, d)

sp sq



Attacking RSA-CRT…
• Let  

• Let  

• Let  

• Now, observe that, since  

•  is divisible by  

• So, , and  

• Ok, you got p, you know N, so you know q — game over!!! 
• Attack is also possible if you do not use CRT — analysis is slightly different

̂s = a × sp + b × ̂sq mod N

s = a × sp + b × sq mod N

Δ = s − ̂s = b(sq − ̂sq)

b ≡ 0 mod p
Δ = b(sq − ̂sq) p

Δ = kp gcd(s − ̂s, n) = p



  Let There Be Faults: Fault Model

• Key component of a fault attack 
• Attack procedure changes 

according to the fault model 
• Random localized faults 

o Bit/nibble/byte fault 
o Most general model 

• Biased faults 
o Device-dependent model 

•  Instruction skip/modify. 
•  Constant fault 

o Stuck-at-0/1 
o Persistant fault

In a fault space of 
size 256, only 8 

faults occur in 98% 
of the total 
injections!!!

ldi    r1   0; 
ld     r1   #M1 
ldi    r2   0 
ld     r2   #M2 
add  r1   r2 
str    r1

ldi    r1   0; 
nop 
ldi    r2   0 
ld     r2   #M2 
add  r1   r2 
str    r1

In a fault space of 
size 256, only 8 

faults occur in 98% 
of the total 
injections!!!



The AES Story…



  Looking Inside AES Once Again
AES

• Nonlinear Boolean Function  

• Finite field inversion followed by 

affine map 

• Also implemented as a table 

• Source of confusion

1 byte 

s00
s10
s20
s20

s01
s11
s21
s31

s02
s12
s22
s32

s03
s13
s23
s33

k00
k10
k20
k20

k01
k11
k21
k31

k02
k12
k22
k32

k03
k13
k23
k33

State

1. SubBytes

2. ShiftRows
• Linear Boolean Function  

• Left circular shift of rows 

• Source of diffusion 3. MixColumns

• Linear Boolean Function  

• Multiplies each column by 

a constant matrix in GF(28) 

• Source of diffusion

4. AddRoundKey

s00
s10
s20
s20

s01
s11
s21
s31

s02
s12
s22
s32

s03
s13
s23
s33

k00
k10
k20
k20

k01
k11
k21
k31

k02
k12
k22
k32

k03
k13
k23
k33

⊕ • Linear Boolean Function  

• XOR the state with a round key



The AES Story…
• The attacker can corrupt one 

specific round operation of AES. 
• One of multiple bytes of the AES 

state gets corrupted. 
• Then what happens? 
• We also assume that we have 

both correct and faulty ciphertext 
for the same plaintext…  

• Where to inject the fault:  
• In round functions 
• In key schedule 



Let there be a fault at 9th round

2f′ = S−1(x1 ⊕ k1) ⊕ S−1(x′ 1 ⊕ k1)
f′ = S−1(x8 ⊕ k8) ⊕ S−1(x′ 8 ⊕ k8)
f′ = S−1(x11 ⊕ k11) ⊕ S−1(x′ 11 ⊕ k11)

3f′ = S−1(x14 ⊕ k14) ⊕ S−1(x′ 14 ⊕ k14)

Let the correct ciphertext be 
 

The faulty ciphertext be  
 

x = (x1, x2, ⋯x16)

x′ = (x′ 1, x′ 2, ⋯x′ 16)



Let there be a fault at 9th round
2f′ = S−1(x1 ⊕ k1) ⊕ S−1(x′ 1 ⊕ k1)

f′ = S−1(x8 ⊕ k8) ⊕ S−1(x′ 8 ⊕ k8)
f′ = S−1(x11 ⊕ k11) ⊕ S−1(x′ 11 ⊕ k11)

3f′ = S−1(x14 ⊕ k14) ⊕ S−1(x′ 14 ⊕ k14)

● On an average there is one solution to the equation:  — 
why?
● Two possible solutions can be  and . In that case .
● If not, then we can transform this to  — which (may) have 2 

more solutions
● If  or , then the equation can have two more solutions in , 

depending on  is even or odd. Solutions have form , with  being a 
field ( ) element. — depends on some deep finite field tricks…

So, it can have 0, 2, or 4 solutions — on average 1 solutions, we observed…. 
● Thus for one value of f’ there is 1 value for k1, k8, k11, k14 which satisfies the equations.

● Thus for all the 28 values of f’, there are 28 values for k1, k8, k11, k14.

● Thus the total size of AES key is 232

S−1(X ) ⊕ S−1(X + α) = β

X = 0 X = α β = α−1

βx2 + αβx + α = 0

X = 0 X = α GF(2n)
n {0,α, eα, e2α} e

GF(2n)



Let there be a fault at 9th round

2f′ = S−1(x1 ⊕ k1) ⊕ S−1(x′ 1 ⊕ k1)
f′ = S−1(x8 ⊕ k8) ⊕ S−1(x′ 8 ⊕ k8)
f′ = S−1(x11 ⊕ k11) ⊕ S−1(x′ 11 ⊕ k11)

3f′ = S−1(x14 ⊕ k14) ⊕ S−1(x′ 14 ⊕ k14)

● With one faulty cipher text:
◦ Number of possible values per 4 bytes of 

the key is around 28.
◦ There are 232 possible candidates for 128 

bits of the AES key.
◦ Brute force key is thus possible!



  Let’s Improve…8th Round Injection 

1 1
1 1 1 1 1 12 ( ) ( )F S c k S c A k− −= ⊕ ⊕ ⊕ ⊕

1 1
1 5 5 5 5 5( ) ( )F S c k S c A k− −= ⊕ ⊕ ⊕ ⊕

1 1
1 9 9 9 9 9( ) ( )F S c k S c A k− −= ⊕ ⊕ ⊕ ⊕

1 1
1 13 13 13 13 133 ( ) ( )F S c k S c A k− −= ⊕ ⊕ ⊕ ⊕



Let’s Improve…8th Round Injection…
● Search space reduced in two phases. 
●    First phase: 

➢Find the 232  candidates of 10th round key. 
● Second phase 

➢  Deduce four differential equation from differences {2f’,f’,f’,3f’}. 
➢ Reduce the 232 candidates to 28 using the four differential equation.



Let’s Improve…8th Round Injection…



AES Key Schedule
● AES key schedule is invertible

Rcon



Let’s Improve…8th Round Injection…

K9 = K10 = {k1, k2, ⋯k16}

● AES key schedule is invertible



Let’s Improve…8th Round Injection…



8th Round Injection…How does the Equation Look?
● We have 4 such equations



Let’s Improve…8th Round Injection…
● Time complexity of previous attack:  
● Time complexity of this attack:  
● Just with one fault injection!!!

O(232)
O(28)



Diagonal Fault Attack
● Multi Byte Faults (more practical)
◦ Attacker induces fault at the input of the 8th 

round in some bytes
◦ Fault value should be non-zero but can be 

arbitrary



Diagonal Fault Attack
Diagonal: A diagonal is a set of four bytes of the 
state matrix, 
where diagonal i is defined as follows: 

According to the above definition and with 
reference to the state matrix of AES 
(refer figure) we obtain the following four 
diagonals.



Diagonal Fault Attack

● M0: One Diagonal affected.
● M1: Two Diagonals affected.
● M2: Three Diagonals affected.
● M3: Four Diagonals affected.



Diagonal Fault Attack

●     Faults induced in Diagonal D0 at the 
input of 8th round AES are all equivalent.



Diagonal Fault Attack



Diagonal Fault Attack

• There are in total 4 such systems of equations for a diagonal D0. 
• Each system of equation gives 28 keys on an average. 
• AES key size gets reduced to 232.



Diagonal Fault Attack: 2 Diagonals Corrupted



Diagonal Fault Attack: 2 Diagonals Corrupted

● The equation reduces the space of the 4 
key bytes of AES to 216

● Two faulty ciphertexts reduce it to a unique 
value on an average (experimental result).



Diagonal Fault Attack: 3 Diagonals Corrupted



Diagonal Fault Attack: 3 Diagonals Corrupted

● The equation reduces the space of the 4 key 
bytes of AES to 224

● Four faulty ciphertexts reduce it to a unique 
value on an average (experimental result).



Diagonal Fault Attack: Practical Injection



Going Beyond AES…Let’s Try DES

Source: Wikipedia
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Going Beyond AES…Let’s Try DES

● The Sorcerer’s Apprenctice’s Guide to Fault Attacks, FDTC 2006

After Fault…

Calculate the differential…



DES Attack
◦ Note that here both input and output differentials are 

known…
◦ Unlike AES where only a pattern of the input differentials 

are known
◦ So, you can solve the equations for k as the only unknown
◦ Note that DES S-Boxes are …so 6 bits has to be 

guessed simultaneously…
◦ You can also use the differential distribution table 

mentioned in the last class to find the number of solutions 
for each S-Box

6 × 4



DES Attack
◦ Each equation gives 4-5 solutions for the key on average…
◦ So, for 8 S-boxs, roughly  ( ) suggestions remain for 

the last round key.
◦ Another issue with DES — although the key size is 56, 

round key size is 48.
◦ So  reduces to  — total master key can be found with 

 exhaustive search…

218 (5)8

248 218

218 × 28 = 226



Using Multiple Ciphertexts
● Common strategy for reducing attack complexity

● Applies irrespective of AES or DES or any 
other cipher..

● Let’s try for AES…
● In general, multiplying the number of faulty 

ciphertext directly reduces the final key 
space size and therefore the complexity of 
the exhaustive search
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  Let’s Improve…8th Round Injection 
● For 1 column, a single injection reduces the key 

space from  to .
●  is basically the expected number of remaining 

subkeys
● This is done by satisfying the equation system.
● The probability of a given (4-byte) subkey satisfying 

this equation is .

●  Now, consider another fault injection
● We can take intersections between the key 

suggestions provided by these two injections…
● For 2-injections the probability will become .
● Expected number of remain subkeys:  

 < 1 — So practically only one 
subkey will remain

232 28

28

28

232
= 2−24

(2−24)2

232 × (2−24)2

1 1
1 1 1 1 1 12 ( ) ( )F S c k S c A k− −= ⊕ ⊕ ⊕ ⊕

1 1
1 5 5 5 5 5( ) ( )F S c k S c A k− −= ⊕ ⊕ ⊕ ⊕

1 1
1 9 9 9 9 9( ) ( )F S c k S c A k− −= ⊕ ⊕ ⊕ ⊕

1 1
1 13 13 13 13 133 ( ) ( )F S c k S c A k− −= ⊕ ⊕ ⊕ ⊕



  A General Model for Differential Fault Attacks

● Identify a distinguisher: 
● Based on fault patterns…
● Example: For AES, 8th round injection, the distinguisher is the linear pattern observed due to fault 

propagation
● For DES, the distinguisher is  — a known value and part of ciphertext!!!
● Distiguisher is mostly an input differential .
● Always try to form equations of the form , where  is a (part of) the 

distinguisher..
● Divide-and Conquer: Find a distinguisher evaluation strategy so that you do not need to guess a lot of keys 

together.
● For AES attacks, this distinguisher evaluation complexity was  — we have a divide-and conquer strategy 

which guesses 32-bits of key at once (independently for 4 columns)
● For DES it is 

● Calculate the Remaining Key Space: Estimate the number of solutions to your equation system. That gives 
you the number of remaining keys after the attack. You have to search these keys exhaustively… 

R16 ⊕ R16′ 

Δi
S−1(X ) ⊕ S−1(X + α) = β β

236

29



© Sayandeep Saha -- Indian Institute of Technology, Kharagpur

  Fault Attacks (FA)

• Key component of a fault attack 
• Attack procedure changes 

according to the fault model 
• Random localized faults 

o Bit/nibble/byte fault 
o Most general model 

• Biased faults 
o Device-dependent model 

•  Instruction skip/modify. 
•  Constant fault 

o Stuck-at-0/1

Fault Models

In a fault space of 
size 256, only 8 

faults occur in 98% 
of the total 
injections!!!

ldi    r1   0; 
ld     r1   #M1 
ldi    r2   0 
ld     r2   #M2 
add  r1   r2 
str    r1

ldi    r1   0; 
nop 
ldi    r2   0 
ld     r2   #M2 
add  r1   r2 
str    r1

In a fault space of 
size 256, only 8 

faults occur in 98% 
of the total 
injections!!!



  Fault Attacks (FA)

• Inject fault in the device during encryption/decryption. 
• Analyze the faulty response to extract the secret 

• Differential fault attacks. 
• Biased fault attacks (SFA/SIFA).

P

ENC

CT

P

ENC

CTf

DFA

…

…

SFA/SIFA

P1

ENC

CTf1

P2

ENC

CTf2

Pn

ENC

CTfn

…



  Statistical Fault Analysis (SFA)

…

…

SFA/SIFA

P1

ENC

CTf1

P2

ENC

CTf2

Pn

ENC

CTfn

…

The Key Idea: 
• Biased fault injection 

makes the state 
statistically biased. 

• This bias is visible only for 
correct key guess. 

• Such attacks require 
several faulty ciphertexts 

0 0 0
0 0 1 
0 1 0
0 1 1
1 0 0
1 0 1 
1 1 0
1 1 1

Correct State Faulty State

0 0 0
0 0 0 
0 1 0
0 1 0
1 0 0
1 0 0 
1 1 0
1 1 0

Example: Consider a stuck-at-0 
fault at the LSB bit of the 
intermediate state. The faulty state 
can only assume even values. 



Round 1

Round 2

Round n-1

Round n

P1…N

C’1…N

C’1…N

Kg

Decrypt till the 
injection state

𝑆𝐸𝐼(𝐾𝑔) =
255

∑
𝑖=0 (

#{𝑡 |𝑆(𝐾𝑔) = 𝑖}
𝑛

−
1

256 )
2

Kg with highest SEI is the correct key 

  Statistical Fault Analysis (SFA)

#{i |S−1(C ⊕ Kg) = i}



Round 1

Round 2

Round n-1

Round n

Faults make the distribution of the state 
statistically biased at the injection point. 

The bias become visible only if the faulty ciphertexts 
are partially decrypted with the correct key guess. 
For wrong guesses the bias disappears. 

P1…N

C’1…N

22-Sep-21



  Statistical Fault Analysis (SFA)

• Similar to SCA attacks in some sense… 
• Key reason: The bias is only observable while the key guess is correct. 
• Interesting fact: You do not need to know the exact bias 

• The SEI metric does not require exact statistical distribution of the 
bias. 

• Issues: Can only be applied at the last few rounds. Not like DFA which can 
also be applied at the middle rounds.



  Statistical Fault Analysis (SFA)

• Similar to SCA attacks in some sense… 
• Key reason: The bias is only observable while the key guess is correct. 
• Interesting fact: You do not need to know the exact bias 

• The SEI metric does not require exact statistical distribution of the 
bias. 

• Issues: Can only be applied at the last few rounds. Not like DFA which can 
also be applied at the middle rounds.



Today

• Fault attack Countermeasures 
• Breaking and fixing FA countermeasures…



  It’s just Redundant Computation

• Do same computation several times. 

• We call it redundant branches of computation. 

• When output/internal computation does not match it 
simply outputs a random value or outputs nothing… 

• Also called concurrent error detection (CED) 
• Assumption: The adversary cannot fault all the 

branches with same valued fault. 

• Motivated by ideas from classical fault tolerance 

literature. 

• Error-detection/Correction codes. 

…

ENC

CT

ENC

CT

ENC

CT

…

= =

P

CT



  What is an Error-Detection/Correction Code

• Adds some redundancy in data so a fixed number of 

erroneous bits can be detected/corrected. 

…

ENC

CT

ENC

CT

ENC

CT

…

= =

P

CT

1

2

3



  What is an Error-Detection/Correction Code

4

• What is the advantage of systematic code? 

• Each message  is padded with check bits  where  

•  

• So, you can process the message and check bits separately. 

x x′ x′ = x . P
c = < x |x′ >



  What is an Error-Detection/Correction Code

• Example 1:  

• Simply repeat your computation  times. 

• It turns into a code . 

• Duplication:  

• Triple modular redundancy:  

• Overhead:  times extra computation

λ
[λk, k, λ]

λ = 2
λ = 3

λ

• Example 2:  

• Add a parity bit as . — simply compute the XOR of all bits 

•  code, with error-detection capability 1 bits. — no correction 

• To check the received word ,  

x′ = ⊕k x

[k + 1,k,2]
y ⊕k y = ⊕k x



  Challenges of CED: Hardware Vs. Time Tradeoff

• Hardware Redundancy:  

• Keep separate hardware for the predictor 

• Almost 100% overhead for simple duplication 

• Parity is sightly better, but for many other codes the overhead can 

be similar to duplication 

• Generally, simple duplication is easier to deal with and allows 
several architectural choices as we see next 



  Challenges of CED: Hardware Vs. Time Tradeoff
• Time Redundancy:  

• Use the same hardware/code, but run it twice 

• Negligible hardware overhead, but throughput is low 

• Efficient design can hide some overhead

• DDR: Double data 

rate.— operate on 

both clock edge 

• So you save clock 

cycles and use 

that for 

redundancy



  Parity-based CED

● First generate check bits 
● For each operation within 

encryption predict check bits 
● Periodically compare predicted 

check bits to generated ones 
● Predicting check bits for each 

operation - most complex step 
◦ Should be compared to 

duplication 
● Can be applied at different levels 

–                                                  
word, byte, nibble

Source : Koren and Krishna, 
Morgan-Kaufman 2007



  Parity for AES

● Operations operate on bytes so byte-level parity is natural 
● ShiftRows: Rotating the parity bits 
● AddRoundKey: Add parity bits of state to those of key 
● SubBytes: Expand Sbox to 256×9 – add output parity bit; to 

propagate incoming errors (rather than having to check) expand to 
512×9 – put incorrect parity bit for inputs with incorrect parity  

● MixColumns: The expressions are:                                         
            

         where          is the msb of  
        the  state byte   in position i,j

)7(
,0

)7(
,3,3,2,1,3

)7(
,3

)7(
,2,2,1,0,2

)7(
,2

)7(
,1,3,1,0,1

)7(
,1

)7(
,0,3,2,0,0

jjjjjj

jjjjjj

jjjjjj

jjjjjj

SSpppp

SSpppp

SSpppp

SSpppp

⊕⊕⊕⊕=

⊕⊕⊕⊕=

⊕⊕⊕⊕=

⊕⊕⊕⊕=

)7(
, jis

Transformation

Transformation Input 
(input state matrix)

Transformation Result 
(output state matrix)

Parity Bit(s)

Parity Prediction

Predicted 
Parity Bit(s)

Source : Koren and Krishna, 
Morgan-Kaufman 2007



  Parity-based CED

● Parity is just one example — can 
be other codes as well.. 

● Fault coverage is not great, all 
single-bit faults are detected 

● There are some ways of using a 
non-linear code to improve fault 
coverage… 

● Better linear codes can also be 
used with higher d. 

Source : Koren and Krishna, 
Morgan-Kaufman 2007



  Infective Countermeasure

● I do not want to do the check…its just an if-else decision 
● Someone can fault the check as well — so I infect…

Source : Lomne et. al. , On the Need of Randomness in Fault 
attack Countermeasures – Application to AES, FDTC 2012



  Infective Countermeasure

● I do not want to do the check…its just an if-else decision 
● Someone can fault the check as well — so I infect… 
● BLFN is a Boolean function with single bit output — has to somehow encoded 

to multi bits



  Infective Countermeasure

Correct Computation Faulty Computation



  Infective Countermeasure

Detection

• Detection countermeasures can be bypassed with biased faults.  
o Patranabis et. al. at COSADE 2014.  

• The detection step leaks for random faults and combined side-channel.  
o Saha et. al. in FDTC 2018.

Infection

• Fournier et. al. and Joye et. al. : Deterministic infection function.   
o Insecure [Lomne et. al. in FDTC 2012]. 

• Gierlichs et. al. : Randomized infective countermeasure.  
o Insecure [Battistello et. al. in FDTC 2013 ;Tupsamudre et. al. in CHES 2014]. 

• Ghosh et. al. : Randomized infective countermeasure with non-linear mixing.  
o Insecure [Banik et. al. INDOCRYPT 2015]. 

• Fournier et. al. and Joye et. al. : Randomized infection function.  
o Insecure against control faults [Patranabis et. al. in HASS 2017].

Recent  
State

• All the existing countermeasures are vulnerable against SIFA and FTA (invented by us).



  Countermeasures in Short…



Let’s Break them All…



  Attack 1: Time Redundancy Countermeasure

S.Patranabis, A.Chakraborty, P.H.Nguyen and D.Mukhopadhyay. A Biased Fault Attack on 
the Time Redundancy Countermeasure for AES. In Proceedings of Constructive Side Channel 
Analysis and Secure Design 2015 (COSADE 2015), Berlin, Germany, April 2015 



  Attack 1: Time Redundancy Countermeasure



  Attack 1: Time Redundancy Countermeasure



  Attack 1: Time Redundancy Countermeasure

● Improving fault collision probability  
◦ Enhancing the probability of identical faults in original and redundant 

rounds 
● Two major aspects 
◦ The size of the fault space  
◦ The probability distribution of faults in the fault space 

● A smaller fault space enhances the fault collision probability 
● A non-uniform probability distribution of faults in the fault space also 

enhances the fault collision probability



  Attack 1: Uniform Random Faults



  Attack 1: Biased Faults

● A total of n faults possible under a fault model F 
● Each fault fi has a probability of occurrence Pr[fi]  
● Let V be the variance of the fault probability distribution 
● Degree of Bias of a fault model increases with increase in V

Fault 
Model

Pr[f1] Pr[f2] Pr[f3] Pr[f4] Pr[f5] Pr[f6] Pr[f7] Pr[f8] V

1 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0
2 0.225 0.200 0.175 0.125 0.100 0.075 0.050 0.050 0.004

3 0.500 0.250 0.125 0.050 0.050 0.025 0 0 0.026



  Attack 1: Biased Faults

● With increase in bias, collision probability increases 
● Long-story short: you can get exploitable faulty ciphertexts with high 

probability, which you can use for attacks
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  Attack 1: With Statistical Fault Analysis (SFA)

#{i |S−1(C ⊕ Kg) = i}



  Attack 1: Biased Faults

Useful 
ciphertexts

Total Fault 
Injections



  Attack 1: Biased Faults



Let’s Break with a Single Fault…
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  Statistical Ineffective Fault Analysis (SIFA)

• The correct state space under the influence of 
faults is biased for biased faults. 

• Example: 
• Consider the stuck-at-0 fault at the MSB 

of a 4-bit state. 
• If value of the faulted state belongs to the 

first 8 table entries the ciphertext is 
correct. 

• The distribution of the state for correct 
values only assumes 8 possible values 
among 16.   

• Works for many other biased fault models. 
• SIFA utilizes correct ciphertexts for attack.  

State distribution w/o faults

Correct State distribution with faults

C. Dobraunig, M. Eichlseder, T. Korak, S. Mangard, F. Mendel, R. Primas, 
“SIFA: Exploiting Ineffective Fault Inductions on Symmetric Cryptography”. 
TCHES 2018
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  Attack 1: With Statistical Fault Analysis (SFA)

#{i |S−1(C ⊕ Kg) = i}
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  Why SIFA is Deadly?

• Most of the FA countermeasures mutes or 
randomizes the faulty ciphertexts. So, in many 
practical situations one can never get faulty 
ciphertexts with a single fault injection. 

• SIFA breaks this barrier.  
• Ineffective faults are feasible for both software 

and hardware implementations. 
• It is not typically limited to stuck-at faults. 

…

ENC

CT

ENC

CT

ENC

CT

…

= =

P

CT



  Why SIFA is Deadly?

• Traditional detection/infection-based 
countermeasures are not useful. 

• Data-dependent Bias in the faults is the main 
cause, which is the property of the fault. 
Maintaining an unbiased state in the presence of 
fault is tricky. …
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A Ray of Hope
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   The Transform-and-Encode Framework

• A framework for realizing SIFA protection on block ciphers. 
• Theoretically established security claims against SIFA. 
• Uses state-of-the-art building blocks. 
• Concrete realization on PRESENT called AntiSIFA. 
• Practical security validation with laser fault injection.
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   The Transform-and-Encode Framework

Root cause of SIFA: 
• Data-dependent bias due to fault 

injection 

Ineffective Transition Probability

Ineffective Transition Probability of a StateCondition for SIFA
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   The Transform-and-Encode Framework

Condition for SIFA Prevention

No SIFA SIFA Happens
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   The Transform-and-Encode Framework

Condition for SIFA Prevention

No SIFA SIFA Happens
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   The Transform-and-Encode Framework

Randomized Domain Transform 
• Parameterized security. 
• SCA countermeasure masking 

is a good domain transform. 
• Bypassing n-bit masking 

requires n-bit biased faults.



Transform: The Main Intuition

0

1 0

• Consider a stuck-at-0 fault 
• The fault in ineffective with probability 0.5 for both state value 0 and 1. 

1
Encoding

0

1

0

Effective Fault

Ineffective Fault

1

1

0

Effective Fault

Ineffective Fault

   The Transform-and-Encode Framework
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The Transform Operation

d = 1

• Generate a 
random bit r. 

• Complement the 
plaintext and entire 
encryption if r = 1. 

• Protection against 
single-bit SIFA 
fault. 

d = n

• Generate one 
random bit r for 
each state bit. 

• Can be realized 
using masking. 

   The Transform-and-Encode Framework
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   SIFA on Masking: 
• Statistical bias can be 

created even with unbiased 
bit flips. 

• The fault has to be injected at 
the intermediate computation 
of an S-Box. 

• Highly feasible for bit-sliced 
software implementations 
and masked hardware with 
intermediate registers. 

   The Transform-and-Encode Framework

C. Dobraunig, M. Eichlseder, H. Gross, S. Mangard, F. Mendel, R. Primas, “Statistical 
Ineffective Fault Attacks on Masked AES with Fault Countermeasures”. ASIACRYPT 2018
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   Encode: 
• Error correction in a per-

share level. 
• Suggested after each non-

linear layer, i.e. S-Box. 
• Redundancy in correction 

operation. 

   The Transform-and-Encode Framework
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  AntiSIFA Countermeasure

SIFA Countermeasure 
• Perform masking and then perform 

correction on each share 
• This we can prove that this strategy 

prevents SIFA attacks 
• No ineffective faults 
• Masking alone prevents biased 

faults. 
• This strategy is also effective against 

FTA.  
• But it still does not end here…
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   AntiSIFA: 
• Transform-and-Encode for 

PRESENT 
• First-order Threshold 

Implementation for masking 
• Duplication code with t = 1 (γ = 3) 

for error-correction.  
• Ensures 3-bit security for fault 

injection outside S-Box (SIFA-1)  
• Ensures 1-bit SIFA security for 

attack inside the S-Box (SIFA-2)  
• Validated using laser faults. 
• SCA security validated using TVLA. 

   The Transform-and-Encode Framework



   To Conclude

• Fault attack countermeasure is still an partially unsolved problem 
• TaE does not solve it entirely, but shows the first pathway 
• Fault+Side channel combined attacks are possible — more deadly and breaks some 

variants of TaE. 
• Fault Template Attack is another fundamental attack, which does not even need 

correct ciphertexts to attack. It can also attack middle rounds of any block cipher 
• Recently, we have developed countermeasures against FTA and combined attacks—

with cryptographic proofs 
• But they are costly — we have still a long way to go…  
• Let the cat and mouse game continue…


