
Implementation Security In
Cryptography

Lecture 03: Introducing Block Ciphers

Recap

• In the last lecture

• What people expect from crypto?

• How they theoretically model the adversaries and the security?

• PRG and PRFs — important building blocks for symmetric key crypto

• Public key also have similar set of security definitions with some more building blocks
based on “hard problems”

• We can always “prove” if these building blocks are secure, then the crypto system is
secure..

• But for this course, we are more interested in

• How these core building blocks are implemented.

• Are they really secure in the practical world??

Today..

• Block ciphers — building blocks for PRFs, and sometimes PRG too..
• PRESENT
• AES

Block Cipher : A Symmetric Key Encryption

Block Cipher
(Encryption)

Secret Key
Plaintext Ciphertext

Block Length

Key Length

• A block cipher encryption algorithm encrypts n bits of
plaintext at a time

• C = Ek(P)

Block Cipher : Decryption

• A block cipher decryption algorithm recovers the plaintext from the
ciphertext.

• P = Dk(C)

Block Cipher
(Decryption)

Secret Key
Ciphertext Plaintext

Block Length

Key Length

Structure of a Block Cipher
Secret Key

Round Key 1

Round Key 2

Round Key 3

Round Key n

Key Whitening

Round 1

Round 2

Round 3

Round n

Plaintext Block

Ciphertext Block

Ke
y

Ex
pa

ns
io

n

Key and Block length
• Generally 128, 192, or 256 bits
• The key and block length can be independent of

each other
• The choice of length decides how effective the

cipher is against brute force attacks.
• 80 bits is considered the minimum requirement.

• Longer lengths however result in slower encryption
times, thus more performance overheads.

An Encryption Round
• Consists of three operations
• Addition of Round Key
• Confusion : Hides the relation

between the ciphertext and the
key.
• Diffusion : Hides the relation

between the ciphertext and the
plaintext.

• Number of rounds is
determined by the cipher’s
resistance to known attacks.

Addition of Round Key

Confusion Layer

Diffusion Layer

Round Input

Round Output

PRESENT: A Lightweight Block Cipher

• Made for lightweight applications.
• ISO standard for lightweight cryptography
• 64-bit block size
• 80/128 bit key size
• 31 rounds
• Now let us see how it is made

PRESENT: A Lightweight Block Cipher
• Made for lightweight applications.
• ISO standard for lightweight cryptography
• 64-bit block size
• 80/128 bit key size
• 64-bit Round keys
• Now let us see how it is made…

PRESENT
PlainText

AddRoundKey 1st RoundRKey

SBoxLayer

PLayer

AddRoundKey

Repeat
31 Round

CipherText

RKey

Key
Schedule

PRESENT: A Lightweight Block Cipher
• Everything is defined as Boolean logic
• For convenience we shall use a special kind of

logic representation style
• Algebraic Normal Form (ANF)
• The functionally complete set is (AND, XOR,

0, 1)
• Also, a bit of notation abuse: + is ⊕

PRESENT
PlainText

AddRoundKey 1st RoundRKey

SBoxLayer

PLayer

AddRoundKey

Repeat
31 Round

CipherText

RKey

Key
Schedule

• Let’s see a bit of ANF
• How do we represent NOT: a + 1
• How do we present OR: a + b + ab — see why?

PRESENT: A Lightweight Block Cipher
• The State Representation PRESENT

PlainText

AddRoundKey 1st RoundRKey

SBoxLayer

PLayer

AddRoundKey

Repeat
31 Round

CipherText

RKey

Key
Schedule

6000F0E0D0C0B0AA0
16 nibbles state

0A

8 bytes Plaintext

0B 0C 0D 0E 00 06

• Nibble: 4-bit chunk of the state.
• In hardware — straightforward
• In software — each 32 bit register contains 8 nibbles. So the

entire state can be contained in 2 registers (embedded
world).

PRESENT: A Lightweight Block Cipher
• AddRoundKey PRESENT

PlainText

AddRoundKey 1st RoundRKey

SBoxLayer

PLayer

AddRoundKey

Repeat
31 Round

CipherText

RKey

Key
Schedule

6000F0E0D0C0B0AA0
16 nibbles state

• Remember “+” means XOR
• Bitwise XOR operation
• Very easy to do in both software and

hardware

50007040302010AE0
16 nibbles round key

+

300080A0E0E0A0A40

PRESENT: A Lightweight Block Cipher
• SBoxLayer PRESENT

PlainText

AddRoundKey 1st RoundRKey

SBoxLayer

PLayer

AddRoundKey

Repeat
31 Round

CipherText

RKey

Key
Schedule

6000F0E0D0C0B0AA0
16 nibbles state

• S-Box is a bijection from 4-bits to 4-bits
• It is not “just” some random mapping
• It has certain properties which makes it

resistant against differential and other attacks

50007040302010AE0

SSSSSSSSSSSSSSASS

PRESENT: A Lightweight Block Cipher
• SBoxLayer

• It has certain properties which makes it
resistant against differential and other
attacks
• Firstly, it is a balanced function
• Secondly, one bit change in input at

least propagate to 2 output bits of
the S-Box

• There are many more to prevent
against differential and linear attacks

PRESENT: A Lightweight Block Cipher
• PLayer

• It is basically a bit-permutation
• But it has also got certain

properties
• Especially, it should ensure high

number of active S-Boxes
• No cost in hardware…But tricky to

implement in software

PRESENT: A Lightweight Block Cipher
• Key Schedule

• It is basically a bit-permutation
• But it has also got certain

properties
• Especially, it should ensure high

number of active S-Boxes
• No cost in hardware…But tricky to

implement in software

PRESENT: A Lightweight Block Cipher
• Key Schedule

• Let us denote the 80-bit master key as

• Round key:

• Key update:

K = k79k78⋯k0

Ki = κ63κ62⋯κ0 = k79k78⋯k16

PRESENT: A Lightweight Block Cipher
• How to Decrypt

• Just perform the sequence of operations in reverse.
• Need the inverse of the S-Box
• Need the inverse permutation
• Can you calculate them? — try it in Python or Sage

Cryptographic Attacks

• Cryptanalytic Attacks:
• Applies mathematical techniques to obtain the key better than a brute force search (try all

possibilities)
• All attacks are distinguishers:

• all (good) ciphers transforms the plaintext distribution to “appear” as random.
• the goal of an attack is to find properties in the cipher which does not exist in random

distribution.
• Attacker guesses a portion of the key and checks for the property.
• Any attack better than a brute force search qualifies as an attack.
• May not be practical but exposes design flaw.

Cryptanalysis and the Kerckhoff’s Principle

• The cryptosystem is known to
the adversary.

• But the key is not known to the
attacker.

• The secrecy of the
cryptosystem lies in the key.

• Cryptanalysis is the art of obtaining
the key.

A Basic Cipher and the notion of Differential
• c=m ⊕ k, where each variable is of b bits.

• If the key is chosen at random and used only once,
then cryptanalyst gains no information about m
from c.
• What happens if the same key is used twice.

c0 ⊕ c1=(m0 ⊕ k) ⊕(m1 ⊕ k)=m0 ⊕m1.

• Provides a notion of ‘difference’ which does not
depend on the key!

• Study the ‘differential’ behavior.
• Consider two encryptions with a pair of plaintexts,

m0 and m1.

• The attacker knows the difference of the internal
values, u0 ⊕ u1.

x 0 1 2 3 4 5 6 7 8 9 a b c d e f

S[x] 6 4 c 5 0 7 2 e 1 f 3 d 8 a 9 b

m c

k1k0

u v⊕ ⊕S

An Exercise on Cryptanalysis

Attack on the Cipher
• u0 ⊕ u1=S-1[v0] ⊕ S-1[v1]

• Attacker guesses k1, and estimates v0 and v1, and
evaluates the above.

• If more than one values of k1 satisfy, try with other
messages.

• Observations:
• Differences between internal variables are exposed.
• Recover key information by guessing parts of the key and

testing whether a differential holds.

The Differential Attack

• u’=u0 ⊕ u1 = a ⊕ 5 = f.

• Consider the inverse R[.] from S[.]:

• For each value t of k1, check: R[t ⊕ 9] ⊕R[t ⊕6]=f => k1ϵ{7,8}

x 0 1 2 3 4 5 6 7 8 9 a b c d e f

R[x] 4 8 6 a 1 3 0 5 c e d f 2 b 7 9

a→⊕→u0→ →v0→⊕→9
↓ ↓
k0 k1

S 5→⊕→u1→ →v1→⊕→6
↓ ↓

S

k0 k1

t 0 1 2 3 4 5 6 7 8 9 a b c d e f

u' e b e e d 8 d f f d 8 d e e b e

S

The Differential Attack (Contd.)

• u0 ⊕ u1 = 9 ⊕ 8 = 1.

• For each value t of k1, check:
 R[t ⊕ 7] ⊕R[t ⊕0]=1 => k1ϵ{0,7}

Thus, k1=7, and k0=d.

9→⊕→u0→ →v0→⊕→7
↓ ↓
k0 k1

S 8→⊕→u1→ →v1→⊕→0
↓ ↓
k0 k1

S

t 0 1 2 3 4 5 6 7 8 9 a b c d e f

u’ 1 8 5 b b 5 8 1 5 9 2 b b 2 9 5

