Implementation Security In
Cryptography

Lecture 03: Introducing Block Ciphers

Recap

o In the last lecture
« What people expect from crypto?
« How they theoretically model the adversaries and the security?
« PRG and PRFs — important building blocks for symmetric key crypto

« Public key also have similar set of security definitions with some more building blocks
based on “hard problems”

« We can always “prove” if these building blocks are secure, then the crypto system s
secure..

« But for this course, we are more interested in
« How these core building blocks are implemented.
o Are they really secure in the practical world??

Today..

 Block ciphers — building blocks for PRFs, and sometimes PRG too..
e« PRESENT
o AES

Block Cipher : A Symmetric Key Encryption

P Key Length S

Secret Key
Plaintext \L Ciphertext
—>
Block Cipher
H)
(Encryption)
< > « A block cipher encryption algorithm encrypts n bits of
Block Length plaintext at a time
« C=E(P)

Block Cipher : Decryption

Key Length
< >

Secret Key
Ciphertext l, Plaintext

Block Cipher

(Decryption)

< > : : : :
Block Length « A block cipher decryption algorithm recovers the plaintext from the
ciphertext.

. P=D/(C)

Structure of a Block Cipher

Plaintext Block Secret Key
]
v
/ Key Whitening |« \L \
v
g (- I
Round 1 </ Round Key 1 |
v
Round 2 <——— Round Key 2 |
v
Round 3 <——— Round Key ?._Ig

v

vey Expans

Ciphertext Block K Round n e—@ound Koy

<

Key and Block length

e Generally 128, 192, or 256 bits

e The key and block length can be independent of
each other

e The choice of length decides how effective the
cipher is against brute force attacks.

« 80 bits is considered the minimum requirement.

e Longer lengths however result in slower encryption
times, thus more performance overheads.

An Encryption Round

 Consists of three operations
« Addition of Round Key

e Confusion : Hides the relation
between the ciphertext and the
key.

 Diffusion : Hides the relation
between the ciphertext and the
plaintext.

e Number of rounds is
determined by the cipher’s
resistance to known attacks.

Round Input

Addition of Round Key

Confusion Layer

Diffusion Layer

Round Output

PRESENT: A Lightweight Block Cipher

o Made for lightweight applications.

« ISO standard for lightweight cryptography
o 64-bit block size

« 80/128 bit key size

e 31 rounds

« Now let us see how it is made

PRESENT: A Lightweight Block Cipher

« Made for lightweight applications.
o ISO standard for lightweight cryptography

« 64-bit block size

« 80/128 bit key size

o 64-bit Round keys

« Now let us see how it is made...

Key
Schedule

PlainText

RKey —

AddRoundKey

J L

SBoxLayer

PLayer

RKey—

AddRoundKey

1l

CipherText

}-lﬂRound

\

Repeat
31 Round

PRESENT: A Lightweight Block Cipher

« Everything is defined as Boolean logic

« For convenience we shall use a special kind of
logic representation style

o Algebraic Normal Form (ANF)

« The functionally complete set is (AND, XOR,
0, 1)

« Also, a bit of notation abuse: + is @

e Let’s see a bit of ANF
« How do we represent NOT: a + 1
« How do we present OR: a + b + ab — see why?

PlainText

RKey—{ AddRoundKey

J L

Key SBoxLayer

Schedule PLayer

RKey— AddRoundKey

1l

CipherText

}-lﬂRound

\

Repeat
31 Round

PRESENT: A Lightweight Block Cipher

e The State Representation

8 bytes Plaintext

OA | OB [OC |OD | OE | 00 | 06
16 nibbles state
O/A/O/B|O|C|O|D|O|E|O|F|O|0|O

e Nibble: 4-bit chunk of the state.
e In hardware — straightforward

Key
Schedule

 In software — each 32 bit register contains 8 nibbles. So the

entire state can be contained in 2 registers (embedded

world).

PlainText

RKey —

AddRoundKey

J L

SBoxLayer

PLayer

RKey—

AddRoundKey

11

CipherText

} 1st Round

\

Repeat
31 Round

PRESENT: A Lightweight Block Cipher

« AddRoundKey

16 nibbles state

O/A|O0|B|O

C

0

D

0

E

0

F

4

16 nibbles round key

O(E|0|1|0

2

0

3

0

4

0

7

0

PlainText

RKey —

AddRoundKey } 1st Round

JL

Key

SBoxLayer

Schedule

Repeat

PL
ayer . 31 Round

RKey—

AddRoundKey

@ J

CipherText

e Remember “+” means XOR

o Bitwise XOR operation

« Very easy to do in both software and

hardware

PRESENT: A Lightweight Block Cipher

e SBoxLayer

PlainText
16 nibbles state e ‘
o[Alo[B[o[C[o|D[o[E[O|F[0[0[0O]6 Y— AddRoundKey
SIS|IS|IS|S|IS|S/SIS|SIS|IS|S|S|S|S Key SBoxLayer
Schedule PLayer
O[E[o[1]0[2[0[3]0[4[0[7[0[0[0]5 RKey— AddRoundKey
CipherText

Siz]|[cls|6[Bl9lo[a[D[3|E[F|8|4]7]1]2

} 1st Round

\

Repeat

. 31 Round

« S-Box is a bijection from 4-bits to 4-bits
o Itis not “just” some random mapping

« It has certain properties which makes it
resistant against differential and other attacks

PRESENT: A Lightweight Block Cipher

« SBoxLayer S ——
+ 21 + o304 + o3 + 3+ 4 + 1

Yo = X1T2T4 + L1X3T4 + L1X3 -+ 331334+

« It has certain properties which makes it
resistant against differential and other

attacks 1+ X9+ 304 + 1
o Firstly, it is a balanced function Y3 = T1X2T4 + T1T2 + T123T4 + T1T3+
« Secondly, one bit change in input at T1 + T2X3T4 + X3
least propagate to 2 output bits of Ya = 1 + Toks - To + 24
the S-Box

o There are many more to prevent
against differential and linear attacks

Siz]|[cls|6[B|olo[a|D|[3|E[F|8]4|7]1]2

PRESENT: A Lightweight Block Cipher

4 k:,b Y4 R4 Y4 nY4aY4 04 04 nYa nYa nYa Y4 0T 0T 2T Y4 0Y4 0 Y4 0Y4 0Y4 04 0T 2 Y4 0Y4 04 0T Y4 2Ya 04 0Y4 Y4 Y4 2Y4 04 04 0Y4 0Y4 0Y4 0T 0Y4 2Y4 2Y4 04 2Y4 2Y4 0Y4 04 Y4 AY4 2Y4 Y4 0T 0Y4A) DAhdbdbdbdbdbddd

e It is basically a bit-permutation
e But it has also got certain

properties

ki+1(\\\ NDDD

e Especially, it should ensure high

number of active S-Boxes

e No cost in hardware...But tricky to
implement in software

0112|345 (6789|1011 |12|13(14]|15
i)|| 01163248 1 |17|33(49| 2 |18|34|50| 3 [19]35]51

16 (17 (1819202122 (23(24|25|26|27|28|29 30|31

3213334 (35(36|37(38(39|40 (41|42 |43|44 45|46 |47
i)l 8 124|140 |56| 9 [25|41(57|10|26|42|58|11|27|43]|59

48149150 (5152|5354 |55|56|57[5H8[59|60|61|62|63
i) (12|28 44|160|13|29|45|61|14|30|46|62|15|31|47|63

2
(
7
P(i)|| 4 [20]36]52] 5 |21|37|53| 6 |22|38|54| 7 |23]39]55
i
(
2
(

PRESENT: A Lightweight Block Cipher

o Key Schedule ks Téﬁﬁ%ﬁ%ﬁéﬁ%ﬁ%%ﬁﬁ%ﬁﬁTﬁwﬁﬁﬁ %ﬁ%ﬁ%ﬁ
e Itis basically a bit-permutation —
e But it has also got certain s
oroperties (slis)s]is]sls]s][s]s]is][s][s]s][s]s]s]

e Especially, it should ensure high
number of active S-Boxes

e No cost in hardware...But tricky to

K
)
K
K
K
K
K

3

Pt
K
e

implement in software b, bl

01123456789 |10(11(12]|13|14|15
i)]| 0 |16 32148 1 [17[33]|49| 2 |18|34|50| 3 |19|35]|51

16 |17 (181192021 (22]23(24|25[26|27|28(29|30]31

i)|l 4 1203652 5|21|37|53|6|22|38|54| 7 |23]|39]|55

2K

i) 8 |24(40|56| 9 |25|41|57|10]|26|42|58|11|27|43|59

4814915051 |52|53(54|55|56|57|58[59(60|61|62|63
i)]112 2844|160 |13]|29|45|61|14]|30|46|62|15|31|47|63

]
(
]
(
i |[32]33[34]35[36[37]38]39[40]41[42[43]44]45]46[47
(
7
(

PRESENT: A Lightweight Block Cipher

o Key Schedule

e Let us denote the 80-bit master key as
K = kqgkyg-+-ky

« Round key: Ki = K63K62'“K0 = k79k78'“k16
« Key update:

].. [k79k78 o oo klko] — [k18k17 P kgoklg]
2. |k7gk7gkr7kre] = S|k7okrgkr7ky]
3. [k19k18k17k16k15] = [k19k18k17k16k15] ¢ round_counter

PRESENT: A Lightweight Block Cipher

e How to Decrypt

 Just perform the sequence of operations in reverse.
e Need the inverse of the S-Box

e Need the inverse permutation

e Can you calculate them? — try it in Python or Sage

Cryptographic Attacks

o Cryptanalytic Attacks:
 Applies mathematical techniques to obtain the key better than a brute force search (try all
possibilities)
o All attacks are distinguishers:
« all (good) ciphers transforms the plaintext distribution to “appear” as random.

« the goal of an attack is to find properties in the cipher which does not exist in random
distribution.

« Attacker guesses a portion of the key and checks for the property.
« Any attack better than a brute force search qualifies as an attack.
« May not be practical but exposes design flaw.

Cryptanalysis and the Kerckhoff’s Principle

Afrer thousands of years, we learned
that it's a bad idea 10 assume that no
one knows how your method works.
Someone will cvenfuo"y find that our.

|

Te“ me how it worksl

Ok..
Greatl Now I \
can decode

5 /everyfhins!

——

7

e —————

)

BAD

Te“ me how it worksl

No problem! I+’
on Wk ped ia, b
key.

%m

:

BETIE

—

e The cryptosystem is known to
the adversary.

« But the key is not known to the
attacker.

o The secrecy of the
cryptosystem lies in the key.

o Cryptanalysis is the art of obtaining
the key.

A Basic Cipher and the notion of Differential

e c=m @ k, where each variable is of b bits.

* If the key 1s chosen at random and used only once,
then cryptanalyst gains no information about m
from c.

* What happens if the same key 1s used twice.
Cp @ ¢;=(m; ® k) ®(m; @ k)=m, ®m,.

* Provides a notion of ‘difference’ which does not
depend on the key!

An Exercise on Cryptanalysis

X 0123456789abcdef
S[x] 64c 5072elf3d8a99hb
K, k,

m @® u < v @ <

 Study the ‘differential’ behavior.

« Consider two encryptions with a pair of plaintexts,
my,and m,.

e The attacker knows the difference of the internal
values, u, @ uj.

Attack on the Cipher

e Uy @ u,;=S1v,] ® S1v,]

. Attacker guesses k,, and estimates v, and v,, and
evaluates the above.

. If more than one values of k, satisfy, try with other
messages.

e Observations:

« Differences between internal variables are exposed.

o Recover key information by guessing parts of the key and
testing whether a differential holds.

The Differential Attack

kO k1 kO ki
1 ! ! 1]
ae@euoe S Voe@e9 5%@%u1% S %VI%@%6

e Usu,@u,=a@®@5=H.

e Consider the inverse R[.] from S[.]:
X 0123456789abcdef

R[x] 486al1l1305ced f2b79

. For each value t of k,, check: R[t ® 9] ®R[t ®6]=f => k,€{7,8}
t 0123456789abcdef
u' ebeed8df fd8dee be

The Differential Attack (Contd.)

kO
.

Qe@euoe

111 kO
|
bevoe@e7 8%@91119

cU,®u,=9®8=1.
. For each value t of k,, check:
R[t ® 7] ®R[t ®0]=1 => k,€{0,7}

k1
{

evle@e()

t

0123456789abcdef

u’

185bb581592bb295

Thus, k,=7, and k,=d.

