Implementation Security In
Cryptography

Lecture 03: Introducing Block Ciphers



Recap

o In the last lecture
« What people expect from crypto?
« How they theoretically model the adversaries and the security?
« PRG and PRFs — important building blocks for symmetric key crypto

« Public key also have similar set of security definitions with some more building blocks
based on “hard problems”

« We can always “prove” if these building blocks are secure, then the crypto system s
secure..

« But for this course, we are more interested in
« How these core building blocks are implemented.
o Are they really secure in the practical world??



Today..

 Block ciphers — building blocks for PRFs, and sometimes PRG too..
e« PRESENT
o AES



Block Cipher : A Symmetric Key Encryption
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Block Cipher : Decryption
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Structure of a Block Cipher
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Key and Block length

e Generally 128, 192, or 256 bits

e The key and block length can be independent of
each other

e The choice of length decides how effective the
cipher is against brute force attacks.

« 80 bits is considered the minimum requirement.

e Longer lengths however result in slower encryption
times, thus more performance overheads.



An Encryption Round

 Consists of three operations
« Addition of Round Key

e Confusion : Hides the relation
between the ciphertext and the
key.

 Diffusion : Hides the relation
between the ciphertext and the
plaintext.

e Number of rounds is
determined by the cipher’s
resistance to known attacks.

Round Input

Addition of Round Key

Confusion Layer

Diffusion Layer

Round Output



PRESENT: A Lightweight Block Cipher

o Made for lightweight applications.

« ISO standard for lightweight cryptography
o 64-bit block size

« 80/128 bit key size

e 31 rounds

« Now let us see how it is made



PRESENT: A Lightweight Block Cipher

« Made for lightweight applications.
o ISO standard for lightweight cryptography

« 64-bit block size

« 80/128 bit key size

o 64-bit Round keys

« Now let us see how it is made...
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PRESENT: A Lightweight Block Cipher

« Everything is defined as Boolean logic

« For convenience we shall use a special kind of
logic representation style

o Algebraic Normal Form (ANF)

« The functionally complete set is (AND, XOR,
0, 1)

« Also, a bit of notation abuse: + is @

e Let’s see a bit of ANF
« How do we represent NOT: a + 1
« How do we present OR: a + b + ab — see why?
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PRESENT: A Lightweight Block Cipher

e The State Representation

8 bytes Plaintext

OA | OB [ OC |OD | OE | 00 | 06
16 nibbles state
O/A/O/B|O|C|O|D|O|E|O|F|O|0|O

e Nibble: 4-bit chunk of the state.
e In hardware — straightforward

Key
Schedule

 In software — each 32 bit register contains 8 nibbles. So the

entire state can be contained in 2 registers (embedded

world).
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PRESENT: A Lightweight Block Cipher

« AddRoundKey

16 nibbles state
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16 nibbles round key
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e Remember “+” means XOR

o Bitwise XOR operation

« Very easy to do in both software and

hardware



PRESENT: A Lightweight Block Cipher

e SBoxLayer

PlainText
16 nibbles state e ‘
o[Alo[B[o[C[o|D[o[E[O|F[0[0[0O]6 Y— AddRoundKey
SIS|IS|IS|S|IS|S/SIS|SIS|IS|S|S|S|S Key SBoxLayer
Schedule PLayer
O[E[o[1]0[2[0[3]0[4[0[7[0[0[0]5 RKey— AddRoundKey
CipherText

Siz]|[cls|6[Bl9lo[a[D[3|E[F|8|4]7]1]2

} 1st Round

\

Repeat

. 31 Round

« S-Box is a bijection from 4-bits to 4-bits
o Itis not “just” some random mapping

« It has certain properties which makes it
resistant against differential and other attacks



PRESENT: A Lightweight Block Cipher

« SBoxLayer S ——
+ 21 + o304 + o3 + 3+ 4 + 1

Yo = X1T2T4 + L1X3T4 + L1X3 -+ 331334+

« It has certain properties which makes it
resistant against differential and other

attacks 1+ X9+ 304 + 1
o Firstly, it is a balanced function Y3 = T1X2T4 + T1T2 + T123T4 + T1T3+
« Secondly, one bit change in input at T1 + T2X3T4 + X3
least propagate to 2 output bits of Ya = 1 + Toks - To + 24
the S-Box

o There are many more to prevent
against differential and linear attacks

Siz]|[cls|6[B|olo[a|D|[3|E[F|8]4|7]1]2




PRESENT: A Lightweight Block Cipher
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e It is basically a bit-permutation
e But it has also got certain

properties

ki+1(\\\ NDDD

e Especially, it should ensure high

number of active S-Boxes

e No cost in hardware...But tricky to
implement in software
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PRESENT: A Lightweight Block Cipher

o Key Schedule ks Téﬁﬁ%ﬁ%ﬁéﬁ%ﬁ%%ﬁﬁ%ﬁﬁTﬁwﬁﬁﬁ %ﬁ%ﬁ%ﬁ
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PRESENT: A Lightweight Block Cipher

o Key Schedule

e Let us denote the 80-bit master key as
K = kqgkyg-+-ky

« Round key: Ki = K63K62'“K0 = k79k78'“k16
« Key update:

].. [k79k78 o oo klko] — [k18k17 P kgoklg]
2. |k7gk7gkr7kre] = S|k7okrgkr7ky]
3. [k19k18k17k16k15] = [k19k18k17k16k15] ¢ round_counter



PRESENT: A Lightweight Block Cipher

e How to Decrypt

 Just perform the sequence of operations in reverse.
e Need the inverse of the S-Box

e Need the inverse permutation

e Can you calculate them? — try it in Python or Sage



Cryptographic Attacks

o Cryptanalytic Attacks:
 Applies mathematical techniques to obtain the key better than a brute force search (try all
possibilities)
o All attacks are distinguishers:
« all (good) ciphers transforms the plaintext distribution to “appear” as random.

« the goal of an attack is to find properties in the cipher which does not exist in random
distribution.

« Attacker guesses a portion of the key and checks for the property.
« Any attack better than a brute force search qualifies as an attack.
« May not be practical but exposes design flaw.




Cryptanalysis and the Kerckhoff’s Principle

Afrer thousands of years, we learned
that it's a bad idea 10 assume that no
one knows how your method works.
Someone will cvenfuo"y find that our.

|
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Greatl Now I \
can decode
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e The cryptosystem is known to
the adversary.

« But the key is not known to the
attacker.

o The secrecy of the
cryptosystem lies in the key.

o Cryptanalysis is the art of obtaining
the key.



A Basic Cipher and the notion of Differential

e c=m @ k, where each variable is of b bits.

* If the key 1s chosen at random and used only once,
then cryptanalyst gains no information about m
from c.

* What happens if the same key 1s used twice.
Cp @ ¢;=(m; ® k) ®(m; @ k)=m, ®m,.

* Provides a notion of ‘difference’ which does not
depend on the key!



An Exercise on Cryptanalysis

X 0123456789abcdef
S[x] 64c 5072elf3d8a99hb
K, k,

m @® u < v @ <

 Study the ‘differential’ behavior.

« Consider two encryptions with a pair of plaintexts,
my,and m,.

e The attacker knows the difference of the internal
values, u, @ uj.



Attack on the Cipher

e Uy @ u,;=S1v,] ® S1v,]

. Attacker guesses k,, and estimates v, and v,, and
evaluates the above.

. If more than one values of k, satisfy, try with other
messages.

e Observations:

« Differences between internal variables are exposed.

o Recover key information by guessing parts of the key and
testing whether a differential holds.



The Differential Attack

kO k1 kO ki
1 ! ! 1]
ae@euoe S Voe@e9 5%@%u1% S %VI%@%6

e Usu,@u,=a@®@5=H.

e Consider the inverse R[.] from S[.]:
X 0123456789abcdef

R[x] 486al1l1305ced f2b79

. For each value t of k,, check: R[t ® 9] ®R[t ®6]=f => k,€{7,8}
t 0123456789abcdef
u' ebeed8df fd8dee be




The Differential Attack (Contd.)

kO
.

Qe@euoe

111 kO
|
bevoe@e7 8%@91119

cU,®u,=9®8=1.
. For each value t of k,, check:
R[t ® 7] ®R[t ®0]=1 => k,€{0,7}

k1
{

evle@e()

t

0123456789abcdef

u’

185bb581592bb295

Thus, k,=7, and k,=d.



