
Implementation Security In 
Cryptography

Lecture 03: Introducing Block Ciphers 



Recap

• In the last lecture 

• What people expect from crypto? 

• How they theoretically model the adversaries and the security? 

• PRG and PRFs — important building blocks for symmetric key crypto 

• Public key also have similar set of security definitions with some more building blocks 
based on “hard problems” 

• We can always “prove” if these building blocks are secure, then the crypto system  is 
secure.. 

• But for this course, we are more interested in  

• How these core building blocks are implemented. 

• Are they really secure in the practical world??



Today..

• Block ciphers — building blocks for PRFs, and sometimes PRG too.. 
• PRESENT 
• AES



Block Cipher : A Symmetric Key Encryption

Block Cipher 
(Encryption)

Secret Key
Plaintext Ciphertext
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Key Length

• A block cipher encryption algorithm encrypts n bits of 
plaintext at a time 

• C = Ek(P)



Block Cipher : Decryption

• A block cipher decryption algorithm recovers the plaintext from the 
ciphertext. 

• P = Dk(C)
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Key Length



Structure of a Block Cipher
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Key and Block length
• Generally 128, 192, or 256 bits  
• The key and block length can be independent of 

each other 
• The choice of length decides how effective the 

cipher is against brute force attacks. 
• 80 bits is considered the minimum requirement. 

• Longer lengths however result in slower encryption 
times, thus more performance overheads.



An Encryption Round
• Consists of three operations 
• Addition of Round Key 
• Confusion : Hides the relation 

between the ciphertext and the 
key. 
• Diffusion : Hides the relation 

between the ciphertext and the 
plaintext. 

• Number of rounds is 
determined by the cipher’s 
resistance to known attacks.

Addition of Round Key

Confusion Layer

Diffusion Layer

Round Input

Round Output



PRESENT: A Lightweight Block Cipher

• Made for lightweight applications. 
• ISO standard for lightweight cryptography 
• 64-bit block size 
• 80/128 bit key size 
• 31 rounds 
• Now let us see how it is made



PRESENT: A Lightweight Block Cipher
• Made for lightweight applications. 
• ISO standard for lightweight cryptography 
• 64-bit block size 
• 80/128 bit key size 
• 64-bit Round keys 
• Now let us see how it is made…

PRESENT
PlainText

AddRoundKey 1st RoundRKey

SBoxLayer

PLayer

AddRoundKey

Repeat 
31 Round

CipherText

RKey

Key 
Schedule



PRESENT: A Lightweight Block Cipher
• Everything is defined as Boolean logic 
• For convenience we shall use a special kind of 

logic representation style 
• Algebraic Normal Form (ANF) 
• The functionally complete set is (AND, XOR, 

0, 1) 
• Also, a bit of notation abuse: + is ⊕

PRESENT
PlainText

AddRoundKey 1st RoundRKey

SBoxLayer

PLayer

AddRoundKey

Repeat 
31 Round

CipherText

RKey

Key 
Schedule

• Let’s see a bit of ANF 
• How do we represent NOT: a + 1 
• How do we present OR: a + b + ab — see why?



PRESENT: A Lightweight Block Cipher
• The State Representation PRESENT

PlainText

AddRoundKey 1st RoundRKey

SBoxLayer

PLayer

AddRoundKey

Repeat 
31 Round

CipherText

RKey

Key 
Schedule

6000F0E0D0C0B0AA0
16 nibbles state

0A

8 bytes Plaintext

0B 0C 0D 0E 00 06

• Nibble: 4-bit chunk of the state. 
• In hardware — straightforward 
• In software — each 32 bit register contains 8 nibbles. So the 

entire state can be contained in 2 registers (embedded 
world).



PRESENT: A Lightweight Block Cipher
• AddRoundKey PRESENT

PlainText

AddRoundKey 1st RoundRKey

SBoxLayer

PLayer

AddRoundKey

Repeat 
31 Round

CipherText

RKey

Key 
Schedule

6000F0E0D0C0B0AA0
16 nibbles state

• Remember “+” means XOR 
• Bitwise XOR operation 
• Very easy to do in both software and 

hardware

50007040302010AE0
16 nibbles round key

+

300080A0E0E0A0A40



PRESENT: A Lightweight Block Cipher
• SBoxLayer PRESENT

PlainText

AddRoundKey 1st RoundRKey

SBoxLayer

PLayer

AddRoundKey

Repeat 
31 Round

CipherText

RKey

Key 
Schedule

6000F0E0D0C0B0AA0
16 nibbles state

• S-Box is a bijection from 4-bits to 4-bits 
• It is not “just” some random mapping 
• It has certain properties which makes it 

resistant against differential and other attacks

50007040302010AE0

SSSSSSSSSSSSSSASS



PRESENT: A Lightweight Block Cipher
• SBoxLayer

• It has certain properties which makes it 
resistant against differential and other 
attacks 
• Firstly, it is a balanced function 
• Secondly, one bit change in input at 

least propagate to 2 output bits of 
the S-Box 

• There are many more to prevent 
against differential and linear attacks



PRESENT: A Lightweight Block Cipher
• PLayer

• It is basically a bit-permutation 
• But it has also got certain 

properties 
• Especially, it should ensure high 

number of active S-Boxes 
• No cost in hardware…But tricky to 

implement in software



PRESENT: A Lightweight Block Cipher
• Key Schedule

• It is basically a bit-permutation 
• But it has also got certain 

properties 
• Especially, it should ensure high 

number of active S-Boxes 
• No cost in hardware…But tricky to 

implement in software



PRESENT: A Lightweight Block Cipher
• Key Schedule

• Let us denote the 80-bit master key as 
 

• Round key:  

• Key update:

K = k79k78⋯k0

Ki = κ63κ62⋯κ0 = k79k78⋯k16



PRESENT: A Lightweight Block Cipher
• How to Decrypt

• Just perform the sequence of operations in reverse. 
• Need the inverse of the S-Box 
• Need the inverse permutation 
• Can you calculate them? — try it in Python or Sage



Cryptographic Attacks

• Cryptanalytic Attacks: 
• Applies mathematical techniques to obtain the key better than a brute force search (try all 

possibilities) 
• All attacks are distinguishers: 

• all (good) ciphers transforms the plaintext distribution to “appear” as random. 
• the goal of an attack is to find properties in the cipher which does not exist in random 

distribution. 
• Attacker guesses a portion of the key and checks for the property. 
• Any attack better than a brute force search qualifies as an attack. 
• May not be practical but exposes design flaw.



Cryptanalysis and the Kerckhoff’s Principle 

• The cryptosystem is known to 
the adversary.  

• But the key is not known to the 
attacker. 

• The secrecy of the 
cryptosystem lies in the key. 

• Cryptanalysis is the art of obtaining 
the key.



A Basic Cipher and the notion of Differential
• c=m ⊕ k, where each variable is of b bits.

• If the key is chosen at random and used only once, 
then cryptanalyst gains no information about m 
from c.
• What happens if the same key is used twice. 

c0 ⊕ c1=(m0 ⊕ k) ⊕(m1 ⊕ k)=m0 ⊕m1.

• Provides a notion of ‘difference’ which does not 
depend on the key!



• Study the ‘differential’ behavior.  
• Consider two encryptions with a pair of plaintexts, 

m0 and m1. 

• The attacker knows the difference of the internal 
values, u0 ⊕ u1. 

x 0  1  2  3  4  5  6  7  8  9  a  b  c  d  e   f 

S[x] 6  4  c   5  0  7  2  e  1  f   3  d  8  a  9  b

m c

k1k0

u v⊕ ⊕S

An Exercise on Cryptanalysis



Attack on the Cipher
• u0 ⊕ u1=S-1[v0] ⊕ S-1[v1] 

• Attacker guesses k1, and estimates v0 and v1, and 
evaluates the above.  

• If more than one values of k1 satisfy, try with other 
messages. 

• Observations: 
• Differences between internal variables are exposed. 
• Recover key information by guessing parts of the key and 

testing whether a differential holds.



The Differential Attack

• u’=u0 ⊕ u1 = a ⊕ 5 = f. 

• Consider the inverse R[.] from S[.]: 

• For each value t of k1, check: R[t ⊕ 9] ⊕R[t ⊕6]=f => k1ϵ{7,8}

x 0  1  2  3  4  5  6  7  8  9  a  b  c  d  e   f 

R[x] 4  8  6  a  1  3  0  5  c  e  d   f  2  b  7  9

a→⊕→u0→      →v0→⊕→9
↓ ↓
k0 k1

S 5→⊕→u1→      →v1→⊕→6
↓ ↓

S

k0 k1 

t 0  1  2  3  4  5  6  7  8  9  a  b  c  d  e   f 

u' e  b  e  e  d  8  d  f   f   d  8  d e  e   b  e

S



The Differential Attack (Contd.)

• u0 ⊕ u1 = 9 ⊕ 8 = 1. 

• For each value t of k1, check: 
     R[t ⊕ 7] ⊕R[t ⊕0]=1 => k1ϵ{0,7} 

Thus, k1=7, and k0=d. 

9→⊕→u0→      →v0→⊕→7
↓ ↓
k0 k1

S 8→⊕→u1→      →v1→⊕→0
↓ ↓
k0 k1

S

t 0  1  2  3  4  5  6  7  8  9  a  b  c  d  e   f 

u’ 1  8  5  b  b  5  8  1  5  9  2  b  b  2  9  5


