
Hardware Design
using Verilog

Prof. Sayandeep Saha and Kalind Karia
Dept. of CSE, IIT Bombay

1

Overview
Glossary: what terms will we cover in this lecture..

2Dept. of CSE, IIT Bombay

● Introduction to Verilog

● Verilog Data Types

● Module Hierarchy

● Assignments

● Testbench

● Simulation

● Some digital logic designs

Combinational and
Sequential Circuit

3

Combinational and Sequential Circuit

4Dept. of CSE, IIT Bombay

● Combinational
○ determine boolean function
○ design using logic gates
○ no memory

● Sequential
○ have memory
○ circuit that remembers!
○ model the circuit to create a

state

Sequential Circuit

Combinational
Circuit

Storage
Element

In
pu

ts

Ou
tp

ut
s

Intro to FPGA and HDLs

5

What is Electronic Design?

6

● Process of developing a circuit by
using known electronic
components in order to meet the
given specifications.

● Specifications: detailed description
of desired behavior of the circuit

● Known devices: devices whose
behavior can be modeled by known
equations or algorithms, with
known values of parameters

Dept. of CSE, IIT Bombay

Hardware Description Languages (HDLs)

7Dept. of CSE, IIT Bombay

● A computer language used to describe the structure and behavior
of electronic circuits (usually digital circuits)

● HDL: easy to describe hardware circuits following a particular
syntax

● Need for HDLs -> Circuits were designed on PCBs, testing and
designing of large circuits not easy, slow time to market and
complex design flow

➔ Verilog
➔ VHDL (Very High Speed Integrated Circuit Hardware Description

Lang.)

ASIC design flow

8Dept. of CSE, IIT Bombay

Introduction to Verilog

9

Verilog language

10Dept. of CSE, IIT Bombay

● One of the two most commonly-used languages in digital
hardware design (other is VHDL).

● Virtually every chip (FPGA, ASIC, etc.) is designed in part using one
of these two languages.

Logic Simulation and Synthesis

11Dept. of CSE, IIT Bombay

● Logic Simulation

○ Runs your circuit in computer before you map it to silicon.

○ Essential for ensuring correctness, testing, etc.

● Logic Synthesis

○ Converts your logic described in high-level to a gate-level
description => equivalent to a compiler.

○ Register-transfer level (RTL) to gates conversion

○ Such compilation also involves logic minimization

Concurrency

12Dept. of CSE, IIT Bombay

● Verilog or any HDL has the power to model concurrency which is
natural to a piece of hardware.

● There may be two hardware circuits running parallely.

● Verilog provides the following constructs for concurrency:

○ always

○ assign

○ module instantiation

○ non-blocking assignments inside a sequential block

Multiplexer built with primitives (structural modelling)

13Dept. of CSE, IIT Bombay

module mux (f, a, b, sel);
input a, b, sel;
output f;

wire f1, f2;

and g1 (f1, a, nsel),
 g2 (f2, b, sel);
or g3 (f, f1, f2);
not g4 (nsel, sel);

endmodule

Verilog programs built from modules

Each module has an interface

Module may contain structure: instances
of primitives and other modules

Identifiers not explicitly defined default to wires

Verilog logic values

14Dept. of CSE, IIT Bombay

● Predefined logic value system or value set to:

○ ‘0’, ‘1’, ‘x’ or ‘z’

● ‘x’ means uninitialized or unknown logic value

● ‘z’ means high impedance value

Verilog data types

15Dept. of CSE, IIT Bombay

● Nets: wire

○ Analogous to a wire in any circuit

○ Cannot store or hold a value

○ To model connectivity, any value driven by a device must be
driven continuously onto that wire, in parallel with the other
driving values.

● Integer: used for the index variables of say for loops. No hardware
implication.

Multiplexer built with always (behavioral modelling)

16Dept. of CSE, IIT Bombay

module mux (f, a, b, sel);
input a, b, sel;
output f;

reg f;

always @(a or b or sel) begin
if (sel) f = b;
else f = a;

end

endmodule

Modules may contain one or
more always blocks

Sensitivity list contains the signals
whose change triggers the execution

of the block

Multiplexer built with always (behavioral modelling)

17Dept. of CSE, IIT Bombay

module mux (f, a, b, sel);
input a, b, sel;
output f;

reg f;

always @(a or b or sel) begin
if (sel) f = b;
else f = a;

end

endmodule

A reg behaves like memory:
holds its value until imperatively

assigned otherwise

Body of an always block contains
traditional imperative code

Multiplexer built with always (behavioral modelling)

18Dept. of CSE, IIT Bombay

module mux (f, a, b, c, d, sel);
input a,b,c,d; input [1:0] sel;
output f;

reg f;

always @(*) begin
case (sel)

2’b00: f = a;
2’b01: f = b;
2’b10: f = c;
2’b11: f = d;
default: f = 2’d0;

endcase
end
endmodule

Triggers the execution of the always
block on the change of all signals

being read in the block

The reg data type

19Dept. of CSE, IIT Bombay

● Register data type: similar to a variable in programming language

● Default initial value: ‘x’

● module reg_ex1;
reg q; wire d;
always @(posedge clk) q = d;

● A reg is not always equivalent to a hardware register, flip-flop or
latch

● module reg_ex2; // purely combinational
reg c;
always @(a or b) c = a|b;

Multiplexer with assign (dataflow modelling)

20Dept. of CSE, IIT Bombay

module mux (f, a, b, sel);
input a, b, sel;
output f;

assign f = sel ? b : a;

endmodule

LHS is always set to the value on the RHS
Any change on the RHS causes

re-evaluation

Any Questions?

21

Module Hierarchy and Instantiation

22Dept. of CSE, IIT Bombay

● Module interface provides the means to interconnect two Verilog
modules.

● Note that a reg cannot be an input or inout port.

● A module may instantiate other modules.

● Instances of module mymod (y, a, b); can be of two ways:

○ Connect-by-position: mymod mm1 (y1, a1, b1);

○ Connect-by-name: mymod mm2 (.a(a2), .b(b2), .y(y2));

Sequential blocks and Procedures

23Dept. of CSE, IIT Bombay

● Sequential block is a group of statements between a begin and an
end.

● A sequential block, in an always statement executes repeatedly.

● Inside an initial statement, it executes only once.

● A procedure is an always or initial statement or a function.

● Procedural statements within a sequential block executes
concurrently with other procedures.

Assignments

24Dept. of CSE, IIT Bombay

● Let’s see the various module assignments

● module xyz ();
// continuous assignments
always // beginning of a procedure

begin // beginning of a sequential block
// …… procedural assignments
end

endmodule

● A continuous assignment assigns a value to a wire like a real gate
driving a wire.

Assignments example

Dept. of CSE, IIT Bombay

module holiday_2 (sat,sun,weekend);
input sat, sun;
output weekend;

reg weekend;

always @(sat or sun)
// procedural assignment
weekend = sat | sun;

endmodule

module holiday_1 (sat,sun,weekend);
input sat, sun;
output weekend;

// continuous assignment
assign weekend = sat | sun;

endmodule

25

Blocking and Non-blocking assignments

26Dept. of CSE, IIT Bombay

● Blocking procedural assignments must be executed before the
procedural flow can pass to the subsequent statement.

● A non-blocking procedural assignment is scheduled to occur
without blocking the procedural flow to subsequent statements.

a = 1; b = a; c = b;

Blocking assignment:
a = b = c = 1

a <= 1; b <= a; c <= b;

Non-blocking assignment:
a = 1
b = old value of a
c = old value of b

Non-blocking looks like latches!

27Dept. of CSE, IIT Bombay

● RHS of non-blocking taken from latches

● RHS of blocking taken from wires

a = 1; b = a; c = b;

a <= 1; b <= a; c <= b;

1
a b c

1
a b c

Examples

Dept. of CSE, IIT Bombay

// blocking assignment
always @(a1 or b1 or c1 or m1) begin

m1 = #3 (a1 & b1);
y1 = #1 (m1 | c1);

end

// non-blocking assignment
always @(a2 or b2 or c2 or m2) begin

m2 <= #3 (a2 & b2);
y2 <= #1 (m2 | c2);

end

Statement executed at time t
causing m1 to be assigned at t+3

Statement executed at time t+3
causing y1 to be assigned at time t+4

Statement executed at time t
causing m2 to be assigned at t+3

Statement executed at time t causing
y2 to be assigned at time t+1.

Uses old values.

28

Numbers

29Dept. of CSE, IIT Bombay

● Format of integer constants:

width’ radix value

● Example: 2’b00 or 2’d0

Any Questions?

30

Ripple Carry Adder

31

Ripple Carry Adder

Dept. of CSE, IIT Bombay 32

● Consists of N cascaded stages of full adder.

Cf : forced carry
C0(n-1) : overflow carry

Si = Ai ⊕ Bi ⊕ Ci
C0i = AiBi + BiC0(i-1) + C0(i-1)Ai

Code for 4-bit Ripple Carry Adder

Dept. of CSE, IIT Bombay

module full_adder (a, b, cin, s, cout);
input a, b, cin;
output s, cout;

assign s = a ^ b ^ cin;
assign cout = (a & b) | (cin & (a ^ b));

endmodule

33

module adder_4bit (a, b, cin, s, cout);
input [3:0] a, b; input cin;
output [3:0] s; output cout;

wire c1, c2, c3;

full_adder fa1 (.a(a[0]), .b(b[0]), .cin(cin), .s(s[0]), .cout(c1));
full_adder fa2 (.a(a[1]), .b(b[1]), .cin(c1), .s(s[1]), .cout(c2));
full_adder fa3 (.a(a[2]), .b(b[2]), .cin(c2), .s(s[2]), .cout(c3));
full_adder fa4 (.a(a[3]), .b(b[3]), .cin(c3), .s(s[3]), .cout(cout));

endmodule

Modelling Sequential Circuits

34Dept. of CSE, IIT Bombay

● always @(posedge clk) begin <procedural_statements> end

● “posedge clk” means that the value in the flip-flops change at the
positive edge of the clk

● “negedge clk” can also be used

● @(sensitivity_list) triggers the always block when one of the
signals in the list changes

Car Speed Controller

Dept. of CSE, IIT Bombay 35

Any Questions?

36

Behavioral Simulation

37

How do we test the behavior of a design?

38Dept. of CSE, IIT Bombay

● Testbench generates stimulus and checks response

● Coupled to model of the system under test

● Testbench and system under test are run simultaneously

Testbench System model under
test

Stimulus

ResponseResult
checker

Looking back at the multiplexer design

39Dept. of CSE, IIT Bombay

// dataflow modelling
module mux2 (in0,in1,sel,out);
input in0, in1, sel;
output out;

assign out = (~sel & in0)
| (sel & in1);

// alternative
// assign out = sel ? in1 : in0;

endmodule

Testbench for the multiplexer

Dept. of CSE, IIT Bombay 40

`timescale 1ns/1ps
module testmux;
reg a, b, s;
wire f;
reg expected;

mux2 dut (.sel(s), .in0(a), .in1(b), .out(f));
initial begin
$monitor (“sel=%b in0=%b in1=%b out=%b,expected out=%b time=%d”,s,a,b,f,expected,$time);

s = 0; a = 0; b = 1; expected = 0;
#10 a = 1; b = 0; expected = 1;
#10 s = 1; a = 0; b = 1; expected = 1;
#10 a = 1; b = 0; expected = 0; #10;

end
initial begin

$dumpfile (“dump.vcd”);
$dumpvars (1, testmux);

end
endmodule

Caution!

41Dept. of CSE, IIT Bombay

● Write codes which can be translated into hardware!

● Following cannot be translated into hardware (non-synthesizable)

○ initial blocks

■ Used to set up initial state or describe finite testbench stimuli

■ Don’t have obvious hardware component

○ Delays

■ Maybe in the Verilog source, but are simply ignored

● Finally, remember that you are a better designer than the tool.

Any Questions?

42

Some more design
examples

43

Counter

44

Code for 4-bit Up Down Counter

Dept. of CSE, IIT Bombay 45

module up_down_counter (clk, rst, up_down, out);
input clk, rst, up_down;
output [3:0] out;

reg [3:0] out;

always @(posedge clk) begin
if (rst)

out <= 4’b0;
else if (up_down)

out <= out + 1’b1;
else

out <= out - 1’b1;
end

endmodule

Testbench for 4-bit Up Down Counter

Dept. of CSE, IIT Bombay 46

`timescale 1ns/1ps
module tb_up_down_counter;
reg clk, rst, up_down;
wire [3:0] count;

initial begin
 $display ("time\t, clk\t, rst\t, up_down\t, count");
 $monitor ("%g\t %b\t %b\t %b\t %d", $time, clk, rst, up_down, count);

 clk = 1; rst = 0;
 #10 rst = 1; up_down = 1; #10 rst = 0;
 #70 up_down = 0; #50 up_down = 1; #60 up_down = 0;
 #20; #5 $finish;
end
always begin
 #5 clk = ~clk;
end

up_down_counter dut (.clk(clk), .rst(rst), .up_down(up_down), .out(count));
initial begin
 $dumpfile ("up_down_counter.vcd"); $dumpvars (1, tb_up_down_counter);
end
endmodule

Composite Function

47

Problem statement

Dept. of CSE, IIT Bombay 48

● Goal: Let’s say we have a function y = f (x) = (A & x) ^ B
where A and B are constants

● You have to implement the below functionality

while (counter <= 31):

x = f(x);
counter++;

How to design the datapath?

Dept. of CSE, IIT Bombay 49

● Let’s draw the design in steps

How to design the datapath?

Dept. of CSE, IIT Bombay 50

● We also need a counter

● The counter counts and the state updates for each clock while
start = 1

How to design the datapath?

Dept. of CSE, IIT Bombay 51

● Now let’s bring in the controller

How to design the datapath?

Dept. of CSE, IIT Bombay 52

● The controller stops the circuit when counter == 31

How to design the datapath?

Dept. of CSE, IIT Bombay 53

● The controller stops the circuit when counter == 31
● It also generates output at that point, controlled by “done” signal

How to design the datapath?

Dept. of CSE, IIT Bombay 54

● Some more essential input signals

Karatsuba Multiplier

55

Karatsuba algorithm

Dept. of CSE, IIT Bombay 56

● Basic principle: divide-and-conquer

● Computes product of two numbers x and y using three
multiplications of smaller numbers, each having half the digits as x
or y, and some additions and logical shifts.

Karatsuba algorithm

Dept. of CSE, IIT Bombay 57

● Let x and y be n-digit strings in base B. For any positive integer m
less than n, we can write,

x = x1B
m + x0 and y = y1B

m + y0
where x0 and y0 are less than Bm.

● The product is then,
xy = (x1B

m + x0)(y1B
m + y0)

= x1y1B
2m + (x1y0 + x0y1)B

m + x0y0
= t2B

2m + t1B
m + t0

Karatsuba algorithm

Dept. of CSE, IIT Bombay 58

● The product is then,
xy = t2B

2m + t1B
m + t0

where t2 = x1y1 , t1 = x1y0 + x0y1 , t0 = x0y0
● Karatsuba’s contribution:

with t2 and t0 as before and t3 = (x1 + x0)(y1 + y0),
t1 = x1y0 + x0y1

 = (x1 + x0)(y1 + y0) - x1y1 - x0y0
 = t3 - t2 - t0

Datapath of Karatsuba multiplier

Dept. of CSE, IIT Bombay 59

Recap…

Dept. of CSE, IIT Bombay 60

● Break the design into data path and control path.

● Datapath is mostly combinational.

● Controller is the sequential logic which sends control signal to the data path.

● Always start by drawing the data path.

● Then identify the control signals.

● Make a module for data path components, this may contain many submodules

● Make a separate module for the controller (optional but recommended).

● Instantiate and connect everything in a top module.

● Top module will contain multiple combinational and sequential blocks.

Thank You!

61

