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Overview
Glossary: what terms will we cover in this lecture..
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● Introduction to Verilog

● Verilog Data Types

● Module Hierarchy

● Assignments

● Testbench

● Simulation

● Some digital logic designs



Combinational and
Sequential Circuit
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Combinational and Sequential Circuit

4Dept. of CSE, IIT Bombay

● Combinational
○ determine boolean function
○ design using logic gates
○ no memory

● Sequential
○ have memory
○ circuit that remembers!
○ model the circuit to create a 

state
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Intro to FPGA and HDLs
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What is Electronic Design?
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● Process of developing a circuit by 
using known electronic 
components in order to meet the 
given specifications.

● Specifications: detailed description 
of desired behavior of the circuit

● Known devices: devices whose 
behavior can be modeled by known 
equations or algorithms, with 
known values of parameters
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Hardware Description Languages (HDLs)
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● A computer language used to describe the structure and behavior 
of electronic circuits (usually digital circuits)

● HDL: easy to describe hardware circuits following a particular 
syntax

● Need for HDLs -> Circuits were designed on PCBs, testing and 
designing of large circuits not easy, slow time to market and 
complex design flow

➔ Verilog
➔ VHDL (Very High Speed Integrated Circuit Hardware Description 

Lang.)



ASIC design flow
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Introduction to Verilog
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Verilog language
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● One of the two most commonly-used languages in digital 
hardware design (other is VHDL).

● Virtually every chip (FPGA, ASIC, etc.) is designed in part using one 
of these two languages.



Logic Simulation and Synthesis
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● Logic Simulation

○ Runs your circuit in computer before you map it to silicon.

○ Essential for ensuring correctness, testing, etc.

● Logic Synthesis

○ Converts your logic described in high-level to a gate-level 
description => equivalent to a compiler.

○ Register-transfer level (RTL) to gates conversion

○ Such compilation also involves logic minimization



Concurrency
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● Verilog or any HDL has the power to model concurrency which is 
natural to a piece of hardware.

● There may be two hardware circuits running parallely.

● Verilog provides the following constructs for concurrency:

○ always

○ assign

○ module instantiation

○ non-blocking assignments inside a sequential block



Multiplexer built with primitives (structural modelling)
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module mux (f, a, b, sel);
input a, b, sel;
output f;

wire f1, f2;

and g1 (f1,   a,  nsel),
    g2 (f2,   b,  sel);
or  g3 (f,    f1, f2);
not g4 (nsel, sel);

endmodule

Verilog programs built from modules

Each module has an interface

Module may contain structure: instances 
of primitives and other modules

Identifiers not explicitly defined default to wires



Verilog logic values
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● Predefined logic value system or value set to:

○ ‘0’, ‘1’, ‘x’ or ‘z’

● ‘x’ means uninitialized or unknown logic value

● ‘z’ means high impedance value



Verilog data types
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● Nets: wire

○ Analogous to a wire in any circuit

○ Cannot store or hold a value

○ To model connectivity, any value driven by a device must be 
driven continuously onto that wire, in parallel with the other 
driving values.

● Integer: used for the index variables of say for loops. No hardware 
implication.



Multiplexer built with always (behavioral modelling)
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module mux (f, a, b, sel);
input a, b, sel;
output f;

reg f;

always @(a or b or sel) begin
if (sel) f = b;
else f = a;

end

endmodule

Modules may contain one or
more always blocks

Sensitivity list contains the signals 
whose change triggers the execution 

of the block



Multiplexer built with always (behavioral modelling)
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module mux (f, a, b, sel);
input a, b, sel;
output f;

reg f;

always @(a or b or sel) begin
if (sel) f = b;
else f = a;

end

endmodule

A reg behaves like memory:
holds its value until imperatively

assigned otherwise

Body of an always block contains 
traditional imperative code



Multiplexer built with always (behavioral modelling)
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module mux (f, a, b, c, d, sel);
input a,b,c,d; input [1:0] sel;
output f;

reg f;

always @(*) begin
case (sel)

2’b00: f = a;
2’b01: f = b;
2’b10: f = c;
2’b11: f = d;
default: f = 2’d0;

endcase
end
endmodule

Triggers the execution of the always 
block on the change of all signals 

being read in the block



The reg data type
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● Register data type: similar to a variable in programming language

● Default initial value: ‘x’

● module reg_ex1;
reg q; wire d;
always @(posedge clk) q = d;

● A reg is not always equivalent to a hardware register, flip-flop or 
latch

● module reg_ex2; // purely combinational
reg c;
always @(a or b) c = a|b;



Multiplexer with assign (dataflow modelling)

20Dept. of CSE, IIT Bombay

module mux (f, a, b, sel);
input a, b, sel;
output f;

assign f = sel ? b : a;

endmodule

LHS is always set to the value on the RHS
Any change on the RHS causes 

re-evaluation



Any Questions?
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Module Hierarchy and Instantiation
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● Module interface provides the means to interconnect two Verilog 
modules.

● Note that a reg cannot be an input or inout port.

● A module may instantiate other modules.

● Instances of module mymod (y, a, b); can be of two ways:

○ Connect-by-position:  mymod mm1 (y1, a1, b1);

○ Connect-by-name:  mymod mm2 (.a(a2), .b(b2), .y(y2));



Sequential blocks and Procedures
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● Sequential block is a group of statements between a begin and an 
end.

● A sequential block, in an always statement executes repeatedly.

● Inside an initial statement, it executes only once.

● A procedure is an always or initial statement or a function.

● Procedural statements within a sequential block executes 
concurrently with other procedures.



Assignments
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● Let’s see the various module assignments

● module xyz ();
// continuous assignments
always // beginning of a procedure

begin // beginning of a sequential block
// …… procedural assignments
end

endmodule

● A continuous assignment assigns a value to a wire like a real gate 
driving a wire.



Assignments example
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module holiday_2 (sat,sun,weekend);
input sat, sun;
output weekend;

reg weekend;

always @(sat or sun)
// procedural assignment
weekend = sat | sun;

endmodule

module holiday_1 (sat,sun,weekend);
input sat, sun;
output weekend;

// continuous assignment
assign weekend = sat | sun;

endmodule
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Blocking and Non-blocking assignments
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● Blocking procedural assignments must be executed before the 
procedural flow can pass to the subsequent statement.

● A non-blocking procedural assignment is scheduled to occur 
without blocking the procedural flow to subsequent statements.

a = 1; b = a; c = b;

Blocking assignment:
a = b = c = 1

a <= 1; b <= a; c <= b;

Non-blocking assignment:
a = 1
b = old value of a
c = old value of b



Non-blocking looks like latches!
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● RHS of non-blocking taken from latches

● RHS of blocking taken from wires

a = 1; b = a; c = b;

a <= 1; b <= a; c <= b;

1
a b c

1
a b c



Examples
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// blocking assignment
always @(a1 or b1 or c1 or m1) begin

m1 = #3 (a1 & b1);
y1 = #1 (m1 | c1);

end

// non-blocking assignment
always @(a2 or b2 or c2 or m2) begin

m2 <= #3 (a2 & b2);
y2 <= #1 (m2 | c2);

end

Statement executed at time t 
causing m1 to be assigned at t+3

Statement executed at time t+3 
causing y1 to be assigned at time t+4

Statement executed at time t 
causing m2 to be assigned at t+3

Statement executed at time t causing 
y2 to be assigned at time t+1.

Uses old values.
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Numbers
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● Format of integer constants:

width’ radix value

● Example: 2’b00 or 2’d0



Any Questions?
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Ripple Carry Adder
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Ripple Carry Adder
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● Consists of N cascaded stages of full adder.

Cf : forced carry
C0(n-1) : overflow carry

Si = Ai ⊕ Bi ⊕ Ci
C0i = AiBi + BiC0(i-1) + C0(i-1)Ai



Code for 4-bit Ripple Carry Adder
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module full_adder (a, b, cin, s, cout);
input a, b, cin;
output s, cout;

assign s = a ^ b ^ cin;
assign cout = (a & b) | (cin & (a ^ b));

endmodule

33

module adder_4bit (a, b, cin, s, cout);
input [3:0] a, b; input cin;
output [3:0] s; output cout;

wire c1, c2, c3;

full_adder fa1 (.a(a[0]), .b(b[0]), .cin(cin), .s(s[0]), .cout(c1));
full_adder fa2 (.a(a[1]), .b(b[1]), .cin(c1), .s(s[1]), .cout(c2));
full_adder fa3 (.a(a[2]), .b(b[2]), .cin(c2), .s(s[2]), .cout(c3));
full_adder fa4 (.a(a[3]), .b(b[3]), .cin(c3), .s(s[3]), .cout(cout));

endmodule



Modelling Sequential Circuits
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● always @(posedge clk) begin <procedural_statements> end

● “posedge clk” means that the value in the flip-flops change at the 
positive edge of the clk

● “negedge clk” can also be used

● @(sensitivity_list) triggers the always block when one of the 
signals in the list changes



Car Speed Controller
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Any Questions?
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Behavioral Simulation
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How do we test the behavior of a design?
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● Testbench generates stimulus and checks response

● Coupled to model of the system under test

● Testbench and system under test are run simultaneously

Testbench System model under 
test

Stimulus

ResponseResult 
checker



Looking back at the multiplexer design

39Dept. of CSE, IIT Bombay

// dataflow modelling
module mux2 (in0,in1,sel,out);
input in0, in1, sel;
output out;

assign out = (~sel & in0)
| (sel & in1);

// alternative
// assign out = sel ? in1 : in0;

endmodule



Testbench for the multiplexer
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`timescale 1ns/1ps
module testmux;
reg a, b, s;
wire f;
reg expected;

mux2 dut (.sel(s), .in0(a), .in1(b), .out(f));
initial begin
$monitor (“sel=%b in0=%b in1=%b out=%b,expected out=%b time=%d”,s,a,b,f,expected,$time);

s = 0; a = 0; b = 1; expected = 0;
#10 a = 1; b = 0; expected = 1;
#10 s = 1; a = 0; b = 1; expected = 1;
#10 a = 1; b = 0; expected = 0; #10;

end
initial begin

$dumpfile (“dump.vcd”);
$dumpvars (1, testmux);

end
endmodule



Caution!
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● Write codes which can be translated into hardware!

● Following cannot be translated into hardware (non-synthesizable)

○ initial blocks

■ Used to set up initial state or describe finite testbench stimuli

■ Don’t have obvious hardware component

○ Delays

■ Maybe in the Verilog source, but are simply ignored

● Finally, remember that you are a better designer than the tool.



Any Questions?
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Some more design 
examples
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Counter
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Code for 4-bit Up Down Counter

Dept. of CSE, IIT Bombay 45

module up_down_counter (clk, rst, up_down, out);
input clk, rst, up_down;
output [3:0] out;

reg [3:0] out;

always @(posedge clk) begin
if (rst)

out <=  4’b0;
else if (up_down)

out <=  out + 1’b1;
else

out <=  out - 1’b1;
end

endmodule



Testbench for 4-bit Up Down Counter
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`timescale 1ns/1ps
module tb_up_down_counter;
reg clk, rst, up_down;
wire [3:0] count;

initial begin
        $display ("time\t, clk\t, rst\t, up_down\t, count");
        $monitor ("%g\t %b\t %b\t %b\t %d", $time, clk, rst, up_down, count);

        clk = 1; rst = 0;
        #10 rst = 1; up_down = 1; #10 rst = 0;
        #70 up_down = 0; #50 up_down = 1; #60 up_down = 0;
        #20; #5 $finish;
end
always begin
        #5 clk = ~clk;
end

up_down_counter dut (.clk(clk), .rst(rst), .up_down(up_down), .out(count));
initial begin
        $dumpfile ("up_down_counter.vcd"); $dumpvars (1, tb_up_down_counter);
end
endmodule



Composite Function
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Problem statement
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● Goal: Let’s say we have a function y = f (x) = (A & x) ^ B
where A and B are constants

● You have to implement the below functionality

while (counter <= 31):

x = f(x);
counter++;



How to design the datapath?
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● Let’s draw the design in steps



How to design the datapath?
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● We also need a counter

● The counter counts and the state updates for each clock while 
start = 1



How to design the datapath?
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● Now let’s bring in the controller



How to design the datapath?
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● The controller stops the circuit when counter == 31



How to design the datapath?
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● The controller stops the circuit when counter == 31
● It also generates output at that point, controlled by “done” signal



How to design the datapath?
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● Some more essential input signals



Karatsuba Multiplier
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Karatsuba algorithm
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● Basic principle: divide-and-conquer

● Computes product of two numbers x and y using three 
multiplications of smaller numbers, each having half the digits as x 
or y, and some additions and logical shifts.



Karatsuba algorithm
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● Let x and y be n-digit strings in base B. For any positive integer m 
less than n, we can write,

x = x1B
m + x0 and y = y1B

m + y0
where x0 and y0 are less than Bm.

● The product is then,
xy = (x1B

m + x0)(y1B
m + y0)

= x1y1B
2m + (x1y0 + x0y1)B

m + x0y0
= t2B

2m + t1B
m + t0



Karatsuba algorithm
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● The product is then,
xy = t2B

2m + t1B
m + t0

where t2 = x1y1 , t1 = x1y0 + x0y1 , t0 = x0y0
● Karatsuba’s contribution:

with t2 and t0 as before and t3 = (x1 + x0)(y1 + y0),
t1 = x1y0 + x0y1

     = (x1 + x0)(y1 + y0) - x1y1 - x0y0
     = t3 - t2 - t0



Datapath of Karatsuba multiplier
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Recap…
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● Break the design into data path and control path.

● Datapath is mostly combinational.

● Controller is the sequential logic which sends control signal to the data path.

● Always start by drawing the data path.

● Then identify the control signals.

● Make a module for data path components, this may contain many submodules

● Make a separate module for the controller (optional but recommended).

● Instantiate and connect everything in a top module.

● Top module will contain multiple combinational and sequential blocks.



Thank You!
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