Implementation Security In Cryptography

Lecture 06: Finite Field and Hardware

Recap

- In the last lecture
 - Basics of Hardware Design

So Far — In case you are lost

- We learnt some basic notions of security perfect secrecy, indistinguishability, importance of having a block cipher
- We saw a simple block cipher PRESENT, and learnt Verilog to code it
- We saw some hardware design principles and learnt about delay, area etc. to roughly estimate a design cost before deployment — helps to talk in terms of hardware

Next...

- We shall learn finite fields
- We shall see a glimpse of how to implement finite field arithmetic
 - Hardware, software
- And eventually we shall see how to implement AES which is "totally" in a finite field..

Today

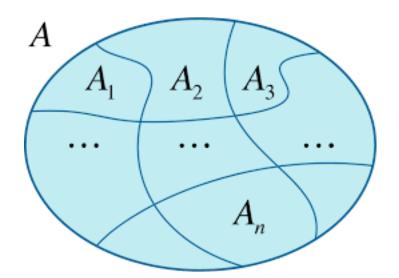
• Finite Field — Mathematics and Hardware

Congruences

• What is $a \equiv b \mod n$?

Congruences

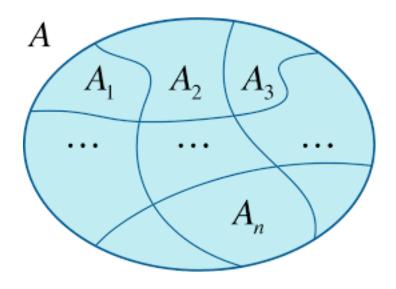
- What is $a \equiv b \mod n$?
 - $n \mid (b-a)$
- This is an equivalence relation
 - $a \equiv a \mod n \text{reflexive}$



- $a \equiv b \mod n \implies b \equiv a \mod n \text{symmetric}$
- $a \equiv b \mod n \land b \equiv c \mod n \implies a \equiv c \mod n \text{transitive}$
- Therefore, this relation will create disjoint partitions over the set of integers.

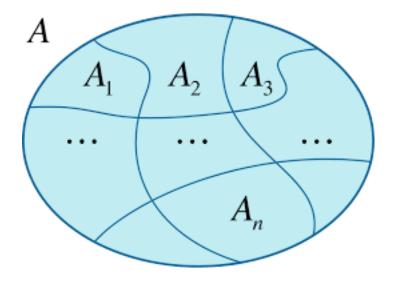
Residue Class

- $a \equiv b \mod n$
 - $\bullet \; n \, | \, (b-a)$
 - $a = b + kn, k \in \mathbb{Z}$
 - The equivalent classes are as follows:
 - *a mod n* consists of all integers that are obtain by adding (subtracting) kn with a.
 - Example: Let say n = 7
 - Residue class 1 mod 7 = $\{1, 1 \pm 7, 1 \pm 2 * 7, \dots\}$



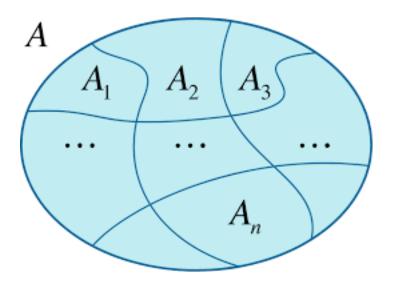
Residue Class

- Set of all residue classes mod n
 - Denoted as Z/nZ
 - How many elements does this set have?



Residue Class

- Set of all residue classes mod n
 - Denoted as Z/nZ
 - How many elements does this set have?
 - [0], [1], [2] ,..., [n-1]
 - Now let's talk only in terms of these classes..



Some Important Theorems

- $a \equiv b \mod n$, and $c \equiv d \mod n$ implies
 - $-a \equiv -b \mod n$
 - $a + c \equiv b + d \mod n$
 - $ac \equiv bd \mod n$
- Try the proofs by yourself

Group

- A group is a mathematical structure with a (nonempty) set and a (binary) operator (G, +).
 - Closure: $a, b \in G \implies a + b \in G$
 - Associativity: $a, b, c \in G \implies a + (b + c) = (a + b) + c$
 - Identity: $\exists e \in G, \forall a \in G, a + e = e + a = a$
 - Inverse: $\forall a \in G, \exists a^{-1} \in G, a + a^{-1} = a^{-1} + a = e$
- A group is abelian or commutative if $\forall a, b \in G, a + b = b + a$

Examples

- The set of integers with +
 - The sums are also integers
 - a+(b+c) = (a+b)+c
 - 0 is the identity element
 - -a is the inverse of a.
- Does the set of integers form a group under multiplication?
- Set of rational numbers under multiplication?

What About the Residue Classes

- The set of residue classes form a group under "addition"
 - The addition is between classes: [a] + [b]
 - => a mod n + b mod n = (a + b) mod n

 It is closed 	$(\mathbb{Z}_3,+_3)$	[[0]] ₃	[[1]] ₃	[[2]] ₃
 It is associative 	[[0]] ₃	[[0]] ₃	[[1]] ₃	[[2]] ₃
• [0] is the identity	[[1]] ₃	[[1]] ₃	[[2]] ₃	[[0]] ₀
Inverse of [a] is basically [n a]	[[2]] ₃	[2] ₃	[[0]] ₃	[1] ₃

• Inverse of [a] is basically [n - a]

What About the Residue Classes

- The set of residue classes form a group under "addition"
 - The addition is between classes: [a] + [b]
 - => a mod $n + b \mod n = (a + b) \mod n$

• => a mou n + p mou n = (a + p) mou n				
• It is closed	$(\mathbb{Z}_3,+_3)$	[[0]] ₃	$[\![1]\!]_3$	[2] ₃
	[[0]] ₃	[[0]] ₃	$[\![1]\!]_3$	[[2]] ₃
 It is associative 	[[1]] ₃	[[1]] ₃	[[2]] ₃	[[0]] ₀
 [0] is the identity 		[[2]] ₃		

- Inverse of [a] is basically [n a]
- The set of residue classes is also a group under multiplication **under** certain conditions

- We denote it by (($\mathbb{Z}/n\mathbb{Z}, \circ$) or ((\mathbb{Z}_n, \circ)
 - The multiplication is between classes: [a] * [b]
 - => (a mod n) * (b mod n) = (a + k1*n)(b + k2*n) = ab + a*k2*n + b*k1*n + k1*k2*n^2 = ab + (a*k2 + b*k1 + k1*k2*n)*n = ab + k3*n = [ab]
 - It is closed
 - It is associative (prove it)
 - [1] is the identity
 - But where is the inverse?????
- Turns out that inverse only exist for certain elements not for all
- Let's define this subset as \mathbb{Z}_n^* this indeed forms a group

• What are the elements of \mathbb{Z}_n^* ?

- What are the elements of \mathbb{Z}_n^* ?
 - Elements that are co-prime to n
 - Another way: gcd(a,n) = 1
- What happens if n is a prime, say p?

- What are the elements of \mathbb{Z}_n^* ?
 - Elements that are co-prime to n
 - Another way: gcd(a,n) = 1
- What happens if n is a prime, say p?
- $\bullet |\mathbb{Z}_n^*| = p 1$
- How many elements in \mathbb{Z}_n^* can be there if n is not a prime?
 - This number is called $\Phi(n)$ Euler's Totient Function
 - Example: $\Phi(26)=13$, $\Phi(p)=p-1$, if p is prime

Fermat's Little Theorem

- If gcd(a, n) = 1, then $a^{\Phi(n)} = 1 \mod n$
 - That means for any element of \mathbb{Z}_n^* , we can raise it to the power of $\Phi(n)$ and end up in the identity element!!!
- Proof: Will not be discussed for the sake of time!! I can tell you later if you are interested..
- $a^{p-1} = 1 \mod p$, if p is prime.
- Interesting fact: $a^{p-2} = a^{-1} \mod p$

Small Examples

- Let's consider \mathbb{Z}_4^*
- What are the elements? [1], [3] let's abuse the notation and denote as 1,
 3
- $\Phi(4) = 2$
- So, let's see 3⁴ mod 4 = 81 mod 4 = 1 !!!
- Calculate: $2^{1000} \mod 13 = 2^{(83 \times 12)+4} \mod 13 = 16 \mod 13 = 3 \mod 13$

Ring

- Let's consider a (nonempty) set with two operations $(G, +, \circ)$
 - G is an abelian group under addition
 - G is closed under multiplication
 - Multiplication is associative
 - There is an identity element
 - But not every element has a multiplicative inverse (other than 0).
 - Also, multiplication is **distributive** on addition
 - $a \cdot (b + c) = (a \cdot b) + (a \cdot c)$ for all a, b, c in R (left distributivity).
 - $(b + c) \cdot a = (b \cdot a) + (c \cdot a)$ for all a, b, c in R (right distributivity)
 - If the multiplication is commutative we call it **commutative ring**

Example

- Consider \mathbb{Z}_n with + and
 - G is a ring if n is composite, there is no inverse unless gcd(a,n) = 1.
- Consider $\mathbb{Z}_4 2$ does not have an inverse no element can be multiplied with 2 giving 1. Rather 2*2 mods 4 = 0. 2 is, therefore, called a **zero divisor**.
- But then consider \mathbb{Z}_5 It is also a ring, but you can see that every element has an inverse.

Field

- Let's consider a (nonempty) set with two operations $(G, +, \circ)$
 - G is commutative ring with every element except 0 having a multiplicative inverse.
- Example:
 - Set of real numbers with addition and multiplication
 - Set of rational numbers with addition and multiplication
 - Set of complex numbers with addition and multiplication
 - Set of integers modulo a prime

Finite Fields

- A finite field is a field with a finite number of elements.
 - Integer modulo a prime, but there are others too.
- The number of elements in the set is called the **order** of the field.
- A field with order m exists iff m is a prime power, i.e m=pⁿ for some integer n and with p a prime integer.
- p is called the **characteristic** of the finite field.

shutterstock.com · 99295679

But p^n is composite right?

- The representation of the field elements change
 - They are no more residue classes modulo an integer.
 - But what are they now?

shutterstock.com · 99295679

Galois Fields

- GF(p): The elements of the fields can be represented by 0, 1, ..., p-1
- For p^n , Elements are represented as polynomials over GF(p).

Binary Finite Fields

- **Binary Finite Fields:** The set G consists polynomials with coefficients in {0,1}
 - Also known as Galois field
 - Represented as GF(2^m), where 2^m is the number of elements in S
 - Addition is XOR
 - For GF(2) multiplication is AND
- AES is constructed using binary finite fields

Polynomials over a Field

A polynomial over a field F is an expression of the form :

$$b(x) = b_{n-1}x^{n-1} + b_{n-2}x^{n-2} + \dots + b_0$$

x being called indeterminate of the polynomial, and the $b_i \in F$ the coefficients.

> The degree of a polynomial equals l if $b_j = 0$, $\forall j > l$, and l is the smallest number with this property. The set of polynomials over a field F is denoted by F[x]. The set of polynomials over a field F, which has a degree less than l, is denoted by F[x]|_l

Operations on Polynomials

• Addition:

$$c(x) = a(x) + b(x) \Leftrightarrow c_i = a_i + b_i, 0 \le i \le n$$

Example

```
Let F be the field in GF(2). Compute the sum
of the polynomials denoted by 87 and 131
In binary, 87 =01010111, and 131 10000011.
In polynomial notations we have,
(x^{6} + x^{4} + x^{2} + x + 1) \oplus (x^{7} + x + 1)
= x^{7} + x^{6} + x^{4} + x^{2} + (1 \oplus 1)x + (1 \oplus 1)
= x^7 + x^6 + x^4 + x^2
The addition can be implemented with the bitwise XOR
instruction.
```

Operations on Polynomials

Addition is closed

0 (polynomial with all coefficients 0) is the identity element. The inverse of an element can be found by replacing each coefficient of the polynomial by its inverse in F. $< F[x]_{i}, + >$ forms an Abelian group

Multiplication

- Associative
- Commutative
- Distributive wrt. addition of polynomials.

In order to make the multiplication closed over $F[x]|_l$ we select a polynomial m(x) of degree *l*, called the reduction polynomial.

The multiplication is then defined as follows:

 $c(x) = a(x).b(x) \Leftrightarrow c(x) \equiv a(x) \times b(x) \pmod{m(x)}$

Hence, the structure $\langle F[x]|_l$, +,. > is a commutative ring. For special choices of the polynomial m(x), the structure becomes a field.

Irreducible Polynomial

 A polynomial d(x) is irreducible over the field GF(p) iff there exist no two polynomials a(x) and b(x) with coefficients in GF(p) such that d(x)=a(x)b(x), where a(x) and b(x) are of degree > 0.

Let F be the field GF(p). With suitable choice for the reduction polynomial, the structure $\langle F[x]|_n$,+,.> is a field with pⁿ elements, usually denoted by GF(pⁿ).

Example

Degree	Irreducible Polynomial
1	(x+1),x
2	(x ² +x+1)
3	(x ³ +x ² +1), (x ³ +x+1)
4	(x ⁴ +x ³ +x ² +x+1), (x ⁴ +x ³ +1),(x ⁴ +x+1)

Example of Multiplication

Compute the product of the elements 87 and 131 $GF(2^8)$ 87 =01010111, ar 131 =10000011.

Example of Multiplication

Compute the product of the elements 87 and 131 in GF(2^8) **87** =01010111, an **131** =10000011. In polynomial notations we have, $(x^{6} + x^{4} + x^{2} + x + 1) \times (x^{7} + x + 1)$ $= (x^{13} + x^{11} + x^9 + x^8 + x^7) \oplus (x^7 + x^5 + x^3 + x^2 + x)$ $\oplus (x^6 + x^4 + x^2 + x + 1)$ $= x^{13} + x^{11} + x^9 + x^8 + x^6 + x^5 + x^4 + x^3 + 1$ and, $(x^{13} + x^{11} + x^9 + x^8 + x^6 + x^5 + x^4 + x^3 + 1)$ $\equiv x^7 + x^6 + 1 \pmod{x^8 + x^4 + x^3 + x + 1}$

Finite Field Multiplication

Consider for example the field GF(2⁴) with irreducible polynomial x⁴ + x +
 1

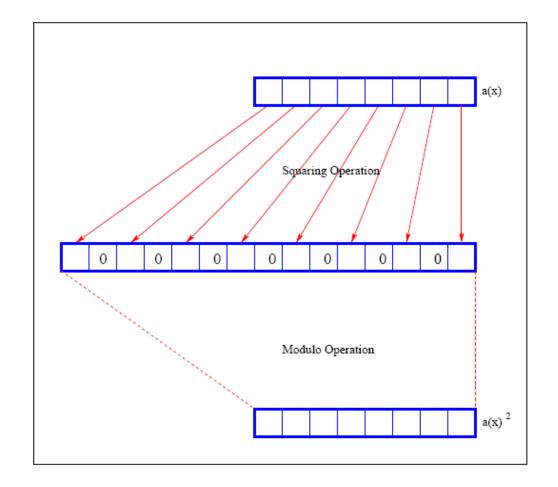
- $x^5 + x + 1$ is not in the field GF(2⁴)
- So, modular reduction

 $(x^5 + x + 1) \mod (x^4 + x + 1) = x^2 + 1$

Main Points in Multiplication

- Do binary multiplication
 - Bitwise AND for partial products
 - XOR your partial products (with proper shifts)
- You can use any multiplier here Karatsuba performs quite well.
 - Only you need to do XORs while combining the results of multiplications
- You will have a large polynomial for two n-1 degree polys the result will be of (max) degree 2n-2.
- Now reduce with a the reduction poly of degree n.

Squaring



Squaring?

• Let's do it...

Multiplication Algorithms

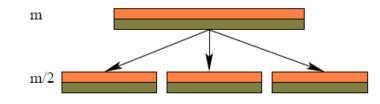
Multiplier	Space Complexity
Karatsuba	$O(n^{\log_2 3})$
Mastrovito	$O(n^2)$
Sunar-Koc	$O(n^2)$
Massey Omura	$O(n^2)$
Montgomery	$O(n^2)$

- The choice of multiplier is determined by the application.
 - Montgomery for example is suited for low resource environments.
 - If designed properly, the Karatsuba multiplier is the fastest.

Finite Field Multiplication

- There are several forms of : **Karatsuba multiplier**. We consider the combinational type which requires just a single clock cycle.
- Two common types of combinational Karatsuba implementations.
 - Simple Karatsuba Multiplier.
 - General Karatsuba Multiplier.

Simple Karatsuba Multiplier



Split multiplicands into two

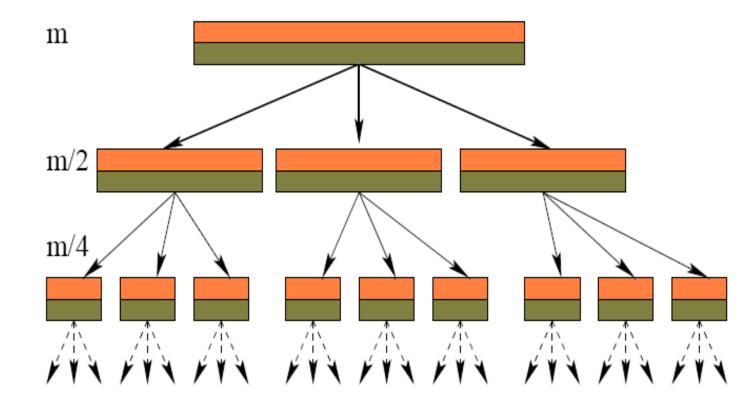
$$A(x) = A_h x^{m/2} + A_l$$
$$B(x) = B_h x^{m/2} + B_l$$

Use three m/2 bit multiplications

$$C'(x) = (A_h x^{m/2} + A_I)(B_h x^{m/2} + B_I)$$

= $A_h B_h x^m + (A_h B_I + A_I B_h) x^{m/2} + A_I B_I$
= $A_{\mu} B_h x^m$
+ $((A_h + A_I)(B_h + B_I) + A_h B_h + A_I B_I) x^{m/2}$
+ $A_I B_I$

Recursive Simple Karatsuba Multiplier

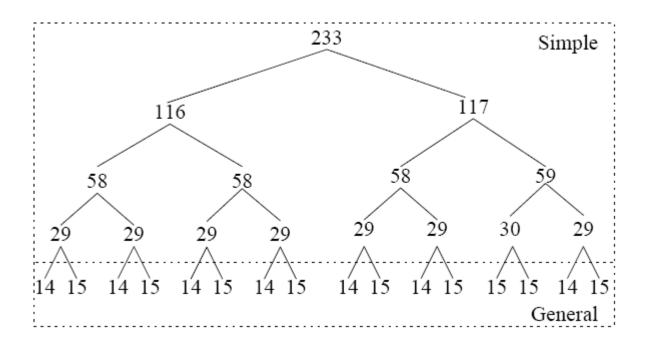


General Karatsuba Multiplier

- Instead of splitting into two, splits into more than two.
 - For example, an m bit multiplier is split into m different multiplications.

A. Weimerskirch, *Generalizations of the Karatsuba Algorithm for Efficient Implementations,* Cryptology ePrint Archive, 2006

Karatsuba Multiplier



The multiplier operates on 233 bit inputs and gives a 465 bit outputs.

The multiplier uses sub-multipliers, with operands as described in the figure.

The initial multipliers are Simple Karatsuba based, however after a threshold of 29, it was realized by Generalized Karatsuba blocks.

Module Multiplier in Verilog

module multiplier(a, b, d); input wire [232:0] a; input wire [232:0] b; output wire [232:0] d; wire [464:0] mout;

ks233 ks(a, b, mout);
mod mod1(mout, d);

(Karatsuba Multiplier) (Modulo Operation)

endmodule

Comparing the General and Simple

m	General		Simple			
	Gates	LUTs	LUTs Under	Gates	LUTs	LUTs Under
			Utilized			Utilized
2	7	3	66.6%	7	3	66.6%
4	37	11	45.5%	33	16	68.7%
8	169	53	20.7%	127	63	66.6%
16	721	188	17.0%	441	220	65.0%
29	2437	670	10.7%	1339	669	65.4%
32	2977	799	11.3%	1447	723	63.9%

• Hybrid Karatsuba Multiplier

- For all recursions less than 29 use the General Karatsuba Multiplier or school book.
- For all recursions greater than 29 use the Simple Karatsuba multiplier

C. Rebeiro, Power Attack Resistant Efficient FPGA Architecture for Karatsuba Multiplier, VLSID 2008