Implementation Security In
Cryptography

Lecture 06: Finite Field and Hardware



Recap

e In the last lecture
e Basics of Hardware Design



So Far — In case you are lost

« We learnt some basic notions of security — perfect secrecy,
indistinguishability, importance of having a block cipher

« We saw a simple block cipher PRESENT, and learnt Verilog to code it

« We saw some hardware design principles and learnt about delay, area
etc. to roughly estimate a design cost before deployment — helps to
talk in terms of hardware



Next...

« We shall learn finite fields
« We shall see a glimpse of how to implement finite field arithmetic

e« Hardware, software

e And eventually we shall see how to implement AES — which is
“totally” in a finite field..



Today

e Finite Field — Mathematics and Hardware



Congruences

e Whatisa = b mod n?



Congruences

a5
e Whatisa=b mod n? a

en|(b—a)

» This is an equivalence relation *
e a = a mod n — reflexive
ca=bmodn — b=a modn— symmetric

ca=bmodnAb=cmodn = a=c mod n — transitive

e Therefore, this relation will create disjoint partitions over the set of
Integers.



Residue Class

ea=bmodn B‘
en|(b—a) ’v
ca=b+knkeZ @

e The equivalent classes are as follows:

« a mod n consists of all integers that are obtain by adding
(subtracting) kn with a.

e« Example: Letsayn=7
« Residueclass 1 mod 7= {1,1x7,1x2%*7,..-}



Residue Class

e Set of all residue classes mod n
e Denoted as Z/nZ

« How many elements does this set have?



Residue Class

e Set of all residue classes mod n a

e Denoted as Z/nZ

« How many elements does this set have?

* [O]/ [1]1 [2] JELYY) [n_l]
e Now let’s talk only in terms of these classes..



Some Important Theorems

ea =b mod n,and c =d mod nimplies
e—a=—bmodn
ea+c=b+dmodn

e ac = bd mod n
e Try the proofs by yourself



Group

e A group is a mathematical structure with a (nonempty) set and a
(binary) operator (G, + ).

e Closure: a,be G — a+beG

e Associativity: a,b,c€e G = a+b+c)=(a+Db)+c
e Identity: de € G,Vae G,a+e=¢e+a=a

elnverse: Vae G,da '€ Ga+a'=a'+a=c¢

« A group is abelian or commutative if Va,b € G,a+ b =b + a



Examples

e The set of integers with +
e« The sums are also integers
e a+(b+c) = (a+b)+c
e 0 is the identity element
e -a is the inverse of a.
e Does the set of integers form a group under multiplication?

 Set of rational numbers under multiplication?



What About the Residue Classes

e The set of residue classes form a group under “addition”

« The addition is between classes: [a] + [b]
e=>amodn+bmodn=(a+b)modn

e It is closed

e It Is associative

« [0] is the identity

e Inverse of [a] is basically [n - 3]

Z —_— -y -~ -y _— -y
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What About the Residue Classes

e The set of residue classes form a group under “addition”
« The addition is between classes: [a] + [b]

e=>amodn+bmodn=(a+b)modn

| 7.+ o 17 ]
e Itis closed (Z3,+3) | 01 10, 1]
, o [015 | [O]ls (115 (2]

e [t IS associative ot M " o
113 L1113 <113 |V |

o [0] is the identity 21 | [20s [0T: [11

e Inverse of [a] is basically [n - a]

e The set of residue classes is also a group under multiplication under
certain conditions




Multiplicative Group Module n

« We denote it by ((Z/ nZ,e)or ((Z,,°)

« The multiplication is between classes: [a] * [b]

e =>(amodn) * (b mod n)=(a+kl*n)(b +k2*n)=ab +a*k2*n + b*k1*n +
k1*k2*nA2 = ab + (a*k2 + b*k1 + k1*k2*n)*n = ab + k3*n = [ab]

o It is closed
o It is associative (prove it)
e [1] is the identity

« Turns out that inverse only exist for certain elements not for all

. Let’s define this subset as Z* — this indeed forms a group



Multiplicative Group Module n

« What are the elements of Z} ?



Multiplicative Group Module n

« What are the elements of Z* ?
e Elements that are co-prime to n
e Another way: gcd(a,n) =1

« What happens if nis a prime, say p?



Multiplicative Group Module n

« What are the elements of Z* ?
o Elements that are co-prime to n
« Another way: gcd(a,n) =1
« What happens if nis a prime, say p?
- [ ZF|=p—1
- How many elements in Z:* can be there if n is not a prime?

« This number is called ®(n) — Euler’s Totient Function

« Example: ®(26) = 13, ®(p) = p — 1, if pis prime



Fermat’s Little Theorem

e If gcd(a, n) = 1, then a® = 1 mod n
» That means for any element of Z¥, we can raise it to the power of
d(n) and end up in the identity element!!!

e Proof: Will not be discussed for the sake of time!! | can tell you later if
you are interested..

e a’~! =1 mod p, if p is prime.

. Interesting fact: @’ > = g~ mod p




Small Examples

. Let’s consider Zj

« What are the elements? [1], [3] — let’s abuse the notation and denote as 1,
3

e D(4) =2
. S0, let’s see 3* mod 4 =81 mod 4 =111l
e Calculate: 21990 ;nod 13 = 283%1D+4 4150 13 = 16 mod 13 = 3 mod 13



Ring

e Let’s consider a (nonempty) set with two operations (G, + , o)
e G is an abelian group under addition
e G is closed under multiplication
e Multiplication is associative
e There is an identity element
« But not every element has a multiplicative inverse (other than 0).

 Also, multiplication is distributive on addition
e a-(b+c)=(a-b)+(a:c)foralla, b, cinR (left distributivity).
e (b+c)-a=(b-a)+(c-a)foralla, b, cinR (right distributivity)

o If the multiplication is commutative we call it commutative ring



Example

« Consider Z, with + and o
e Gisaring if nis composite, there is no inverse unless gcd(a,n) = 1.

« Consider Z, — 2 does not have an inverse — no element can be multiplied
with 2 giving 1. Rather 2*2 mods 4 = 0. 2 is, therefore, called a zero divisor.

« But then consider Z5; — It is also a ring, but you can see that every element
has an inverse.



Field

o Let’s consider a (nonempty) set with two operations (G, + , o)

e G is commutative ring with every element except 0 having a
multiplicative inverse.

e Example:
 Set of real numbers with addition and multiplication
« Set of rational numbers with addition and multiplication
e Set of complex numbers with addition and multiplication
 Set of integers modulo a prime



Finite Fields

* Afinite field is a field with a finite
number of elements.

* Integer modulo a prime, but there
are others too.

« The number of elements in the set is
called the order of the field.

* A field with order m exists iff m is a
prime power, i.e m=pn for some integer
n and with p a prime integer.

* p is called the characteristic of the
finite field.

shutterstock.com + 99295679



But p" is composite right?

* The representation of the field
elements change

* They are no more residue classes
modulo an integer.

« But what are they now?

shutterstock.com + 99295679



Galois Fields

* GF(p): The elements of the fields can be represented by 0, 1, ...,
p-1
- For p", Elements are represented as polynomials over GF(p).



Binary Finite Fields

* Binary Finite Fields: The set G consists
polynomials with coefficients in {0,1}

« Also known as Galois field
« Represented as GF(2m), where 2m is the number of

elements in S

« Addition is XOR
 For GF(2) — multiplication is AND

e AES is constructed using binary finite fields



Polynomials over a Field

A polynomial over a field F 1s an expression

of the form :

b(x)=b_x""+b X" +..+b,

x being called indeterminate of the polynomial,
and the b, € F' the coefficients.

The degree of a polynomial equals / if b, =0, Vj>l,
and / 1s the smallest number with this property.

The set of polynomials over a field F 1s denoted

by F[x]. The set of polynomials over a field F,
which has a degree less than /, 1s denoted by F[x]|,




Operations on Polynomials

 Addition:

c(x)=a(x)+b(x)<=c =a,+b,0=<i=<n




Example

Let F' be the field in GF'(2). Compute the sum

of the polynomials denoted by 87 and 131

In binary, 87 =01010111, and 131 :10000011.

In polynomial notations we have,

CC+x + X +x+ D)D" +x+1)

=x" +x°+x* +x* +(1®Dx+(1D1)

=x +x°+x* +x°

The addition can be implemented with the bitwise XOR

instruction.




Operations on Polynomials

Addition is closed
0 (polynomial with all coefficients 0) 1s the 1dentity element.
The inverse of an element can be found by replacing each

coefficient of the polynomial by its inverse in F.

< F[x],,+ > forms an Abelian group




Multiplication
» Associative
« Commutative
* Distributive wrt. addition of polynomials.

In order to make the multiplication closed over F[x]|,

we select a polynomial m(x) of degree /, called the
reduction polynomial.

The multiplication is then defined as follows:

c(x) =a(x).b(x) = c(x) =a(x)xb(x) (mod m(x))

Hence, the structure <F[x]|,,+,. > 1S a commutative ring.
For special choices of the polynomial m(x), the structure

becomes a field.



Irreducible Polynomial

* A polynomial d(x) is irreducible over the field
GF(p) iff there exist no two polynomials a(x)
and b(x) with coefficients in GF(p) such that

d(x)=a(x)b(x), where a(x) and b(x) are of
degree > 0.

Let F be the field GF(p). With suitable choice for the reduction

polynomial, the structure <F[x]| ,+,.> 1is a field with p” elements,

usually denoted by GF(p").




Example

Degree Irreducible
Polynomial

(x+1),x

(x2+x+1)

1
2
3 (x3+x2+1), (x3+x+1)
4

(x4+x3+x2+x+1),
(x4+x3+1),(x4+x+1)




Example of Multiplication

‘Compute the product of the elements 87 ind 1311 GF(2%)
87 =01010111, ar 131 =10000011.




Example of Multiplication

Compute the product of the elements 87 an( 131 in GF(2°)
87 01010111, an 131 =10000011.

In polynomial notations we have,

C+x' + X +x+D)x(x" +x+1)

=(x"+x"+ X+ X +xX)D (X + X+ X+ X7 +X)
A +x  +x* +x+1)

= x4+ x" x4+ x4+

and,

P+ x"+ X+ x5+ x4+ X+ X0 +])

4
=x +x°+1 (modx* +x* +x° + x+1)




Finite Field Multiplication

« Consider for example the field GF(24) with irreducible polynomial x4 + x +
1

x> 4x? +1
x2 +x  +1
x3  4x? +1
x4 +x3 +X
x° x4 +x2
x> +x  +1

e X5+ x + 1is not in the field GF(24)

e So, modular reduction
(x>5+x+1)mod(x4+x+1)=x2+1



Main Points in Multiplication

e Do binary multiplication
 Bitwise AND for partial products
« XOR your partial products (with proper shifts)
e You can use any multiplier here — Karatsuba performs quite well.

e Only you need to do XORs while combining the results of
multiplications

« You will have a large polynomial — for two n-1 degree polys the result
will be of (max) degree 2n-2.

« Now reduce with a the reduction poly of degree n.



Squaring

Modulo Operation

a(x)

a(x) :




Squaring?

e Let’'sdoit...



Multiplication Algorithms

Multiplier Space Complexity
Karatsuba O(n'oe23)
Mastrovito O(n?)
Sunar-Koc O(n?)
Massey Omura O(n?)
Montgomery O(n?)

o The choice of multiplier is determined by the application.

« Montgomery for example is suited for low resource
environments.

« If designed properly, the Karatsuba multiplier is the fastest.



Finite Field Multiplication

e There are several forms of : Karatsuba multiplier. We consider
the combinational type which requires just a single clock cycle.

« Two common types of combinational Karatsuba implementations.

o Simple Karatsuba Multiplier.
o General Karatsuba Multiplier.



Simple Karatsuba Multiplier

m

Split multiplicands into two
A(x) = Apx™? + A
B(x) = Byx™? + B,
Use three m/2 bit multiplications
C'(x) = (Apx™? + A)(Bpx™? + B))
= ApBpx™ + (ApB; + ABp)x™? + A/B,
= ApBpx™
+ ((Ap + A)(Bp + B)) + ApBp, + A;B))x™?
+ AB



Recursive Simple Karatsuba Multiplier

m

m/2

m/4

FYN FYN FYN FYN FYN AT FYN FYN FYA



General Karatsuba Multiplier

e Instead of splitting into two, splits into more than
two.

o For example, an m bit multiplier is split into m
different multiplications.

A. Weimerskirch, Generalizations of the Karatsuba Algorithm for Efficient Implementations, Cryptology
ePrint Archive, 2006



Karatsuba Multiplier

=2 Simple
/ . \\\\\\\\‘ —
: : /58\ /9\

: /N
14 15 14 15 1415 1415 14 15 14 15 15 15 14 15;

The multiplier operates on 233 bit inputs and
gives a 465 bit outputs.

The multiplier uses sub-multipliers, with
operands as described in the figure.

The initial multipliers are Simple Karatsuba
based, however after a threshold of 29, it was
realized by Generalized Karatsuba blocks.



Module Multiplier in Verilog

module multiplier(a, b, d);
input wire [232:0] a;
input wire [232:0] b;
output wire [232:0] d;
wire [464:0] mout;

ks233 ks(a, b, mout); (Karatsuba Multiplier)
mod mod1l(mout, d); (Modulo Operation)

endmodule



Comparing the General and Simple

m General Simple o Hybrid Karatsuba Multiplier
Gates | LUTs | LUTs Under | Gates | LUTs | LUTs Under F I . | th 29
Utilized Utilired - Forall recursions less than 29 use
2 | 7 3 66.6% 7 3 66.6% the General Karatsuba Multiplier or
4 37 | 11 45.5% 33 | 16 68.7%
8 | 169 | 53 20.7% 127 | 63 66.6% school book.
16 | 721 | 188 17.0% 441 | 220 65.0% - For all recursions greater than 29
20 | 2437 | 670 10.7% | 1339 | 669 65.4% : .t
2 | 2077 | 700 113% | 1247 | 723 63.9% use the Simple Karatsuba multiplier

C. Rebeiro, Power Attack Resistant Efficient FPGA Architecture for Karatsuba Multiplier , VLSID 2008



