
Implementation Security In 
Cryptography

Lecture 06: Finite Field and Hardware



Recap

• In the last lecture 
• Basics of Hardware Design



So Far — In case you are lost

• We learnt some basic notions of security — perfect secrecy, 
indistinguishability, importance of having a block cipher 

• We saw a simple block cipher PRESENT, and learnt Verilog to code it 
• We saw some hardware design principles and learnt about delay, area 

etc. to roughly estimate a design cost before deployment — helps to 
talk in terms of hardware



Next…

• We shall learn finite fields 
• We shall see a glimpse of how to implement finite field arithmetic  

• Hardware, software  
• And eventually we shall see how to implement AES — which is 

“totally” in a finite field..



Today

• Finite Field — Mathematics and Hardware 



Congruences

• What is  ?a ≡ b mod n



Congruences

• What is  ? 

•  

• This is an equivalence relation 

•  — reflexive 

•  — symmetric 

•  — transitive 
• Therefore, this relation will create disjoint partitions over the set of 

integers.

a ≡ b mod n
n | (b − a)

a ≡ a mod n
a ≡ b mod n ⟹ b ≡ a mod n
a ≡ b mod n ∧ b ≡ c mod n ⟹ a ≡ c mod n



Residue Class

•   

•  

•  
• The equivalent classes are as follows: 

•   consists of all integers that are obtain by adding 
(subtracting) kn with a. 

• Example: Let say n = 7 

• Residue class  

a ≡ b mod n
n | (b − a)
a = b + kn, k ∈ ℤ

a mod n

1 mod 7 = {1,1 ± 7,1 ± 2 * 7,⋯}



Residue Class

• Set of all residue classes mod n  
• Denoted as Z/nZ 
• How many elements does this set have?



Residue Class

• Set of all residue classes mod n  
• Denoted as Z/nZ 
• How many elements does this set have? 

• [0], [1], [2] ,…, [n-1]  
• Now let’s talk only in terms of these classes..



Some Important Theorems

• , and  implies  

•  

•  

•  
• Try the proofs by yourself

a ≡ b mod n c ≡ d mod n
−a ≡ − b mod n
a + c ≡ b + d mod n
ac ≡ bd mod n



Group

• A group is a mathematical structure with a (nonempty) set and a 
(binary) operator . 

• Closure:   

• Associativity:  

• Identity:  

• Inverse:  

• A group is abelian or commutative if 

(G, + )
a, b ∈ G ⟹ a + b ∈ G

a, b, c ∈ G ⟹ a + (b + c) = (a + b) + c
∃e ∈ G, ∀a ∈ G, a + e = e + a = a

∀a ∈ G, ∃a−1 ∈ G, a + a−1 = a−1 + a = e
∀a, b ∈ G, a + b = b + a



Examples

• The set of integers with + 
• The sums are also integers 
• a+(b+c) = (a+b)+c 
• 0 is the identity element 
• -a is the inverse of a. 

• Does the set of integers form a group under multiplication? 
• Set of rational numbers under multiplication?



What About the Residue Classes

• The set of residue classes form a group under “addition” 
• The addition is between classes: [a] + [b]  

• => a mod n + b mod n = (a + b) mod n 
• It is closed 
• It is associative 
• [0] is the identity 
• Inverse of [a] is basically [n - a]



What About the Residue Classes

• The set of residue classes form a group under “addition” 

• The addition is between classes: [a] + [b]  

• => a mod n + b mod n = (a + b) mod n 

• It is closed 

• It is associative 

• [0] is the identity 

• Inverse of [a] is basically [n - a] 

• The set of residue classes is also a group under multiplication under 
certain conditions



Multiplicative Group Module n

• We denote it by (  or (  

• The multiplication is between classes: [a] * [b]  
• => (a mod n) * (b mod n) = (a + k1*n)(b + k2*n) = ab + a*k2*n + b*k1*n + 

k1*k2*n^2 = ab + (a*k2 + b*k1 + k1*k2*n)*n = ab + k3*n = [ab] 
• It is closed 
• It is associative (prove it) 
• [1] is the identity 
• But where is the inverse????? 

• Turns out that inverse only exist for certain elements not for all 

• Let’s define this subset as  — this indeed forms a group

(ℤ/ nℤ, ∘ ) (ℤn, ∘ )

ℤ*n



Multiplicative Group Module n

• What are the elements of  ?ℤ*n



Multiplicative Group Module n

• What are the elements of  ? 

• Elements that are co-prime to n 
• Another way: gcd(a,n) = 1 

• What happens if n is a prime, say p?

ℤ*n



Multiplicative Group Module n

• What are the elements of  ? 

• Elements that are co-prime to n 

• Another way: gcd(a,n) = 1 

• What happens if n is a prime, say p? 

•  

• How many elements in  can be there if n is not a prime? 

• This number is called  — Euler’s Totient Function 

• Example: , , if p is prime

ℤ*n

|ℤ*n | = p − 1
ℤ*n

Φ(n)
Φ(26) = 13 Φ(p) = p − 1



Fermat’s Little Theorem

• If gcd(a, n) = 1, then  

• That means for any element of , we can raise it to the power of 
 and end up in the identity element!!! 

• Proof: Will not be discussed for the sake of time!!  I can tell you later if 
you are interested.. 

• , if p is prime. 

• Interesting fact: 

aΦ(n) = 1 mod n
ℤ*n

Φ(n)

ap−1 = 1 mod p

ap−2 = a−1 mod p



Small Examples

• Let’s consider  

• What are the elements? [1], [3] — let’s abuse the notation and denote as 1, 
3 

•  

• So, let’s see  = 81 mod 4 = 1 !!! 

• Calculate:  = 

ℤ*4

Φ(4) = 2

34 mod 4
21000 mod 13 2(83×12)+4 mod 13 = 16 mod 13 = 3 mod 13



Ring

• Let’s consider a (nonempty) set with two operations  

• G is an abelian group under addition 
• G is closed under multiplication 
• Multiplication is associative 
• There is an identity element 
• But not every element has a multiplicative inverse (other than 0). 
• Also, multiplication is distributive on addition 
• a · (b + c) = (a · b) + (a · c) for all a, b, c in R (left distributivity). 

• (b + c) · a = (b · a) + (c · a) for all a, b, c in R (right distributivity) 

• If the multiplication is commutative we call it commutative ring

(G, + , ∘ )



Example

• Consider  with + and  

• G is a ring if n is composite, there is no inverse unless gcd(a,n) = 1. 

• Consider  — 2 does not have an inverse — no element can be multiplied 
with 2 giving 1. Rather 2*2 mods 4 = 0. 2 is, therefore, called a zero divisor. 

• But then consider  — It is also a ring, but you can see that every element 
has an inverse.

ℤn ∘

ℤ4

ℤ5



Field

• Let’s consider a (nonempty) set with two operations  

• G is commutative ring with every element except 0 having a 
multiplicative inverse. 

• Example:  
• Set of real numbers with addition and multiplication 
• Set of rational numbers with addition and multiplication 
• Set of complex numbers with addition and multiplication 
• Set of integers modulo a prime

(G, + , ∘ )



 Finite Fields

• A finite field is a field with a finite 
number of elements. 

• Integer modulo a prime, but there 
are others too. 

• The number of elements in the set is 
called the order of the field. 

• A field with order m exists iff m is a 
prime power, i.e m=pn for some integer 
n and with p a prime integer. 

• p is called the characteristic of the 
finite field. 



 But  is composite right?pn

• The representation of the field 
elements change 

• They are no more residue classes 
modulo an integer. 

• But what are they now?



Galois Fields

• GF(p): The elements of the fields can be represented by 0, 1, …, 
p-1 

• For , Elements are represented as polynomials over GF(p).pn



Binary Finite Fields

• Binary Finite Fields: The set G consists 
polynomials with coefficients in {0,1} 
• Also known as Galois field 
• Represented as GF(2m), where 2m is the number of 

elements in S
• Addition is XOR
• For GF(2) — multiplication is AND 

• AES is constructed using binary finite fields



Polynomials over a Field

1 2
1 2 0

A polynomial over a field F is an expression 
of the form :

( ) ...
 being called indeterminate of the polynomial,  

and the  the coefficients.

n n
n n

i

b x b x b x b
x

b F

− −
− −= + + +

∈

The degree of a polynomial equals  if 0,  > ,

and  is the smallest number with this property. 
The set of polynomials over a field F is denoted 
by F[x]. The set of  polynomials over a field F, 
whi

jl b j l
l

= ∀

ch has a degree less than ,  is denoted by F[x]|ll



Operations on Polynomials

• Addition: 
( ) ( ) ( ) ,0i i ic x a x b x c a b i n= + ⇔ = + ≤ ≤



Example

6 4 2 7

7 6 4 2

Let  be the field in (2). Compute the sum 
of the polynomials denoted by 57 and 83.
In binary, 57=01010111, and 83=10000011. 
In polynomial notations we have, 
( 1) ( 1)

(1 1)

F GF

x x x x x x

x x x x

+ + + + ⊕ + +

= + + + + ⊕
7 6 4 2

(1 1)

The addition can be implemented with the bitwise XOR
instruction.

x

x x x x

+ ⊕

= + + +

87 131

87 131



Addition is closed 
0 (polynomial with all coefficients 0) is the identity element.
The inverse of an element can be found by replacing each 
coefficient of the polynomial by its inverse in F.

[ ] ,  flF x< + > orms an Abelian group

Operations on Polynomials



Multiplication
• Associative 
• Commutative 
• Distributive wrt. addition of polynomials.

In order to make the multiplication closed over [ ] |
we select a polynomial m(x) of degree , called the 
reduction polynomial.
The multiplication is then defined as follows:
( ) ( ). ( ) ( ) ( ) (

lF x
l

c x a x b x c x a x b= ⇔ ≡ × ) (mod m(x))
Hence, the structure < [ ] | , ,.  is a commutative ring. 
For special choices of the polynomial m(x), the structure 
becomes a field.

l

x
F x + >



Irreducible Polynomial
• A polynomial d(x) is irreducible over the field 

GF(p) iff there exist no two polynomials a(x) 
and b(x) with coefficients in GF(p)  such that 
d(x)=a(x)b(x), where a(x) and b(x) are of 
degree > 0.

Let F be the field GF(p). With suitable choice for the reduction 
polynomial, the structure < [ ] | , ,.  is a field with p  elements, 

usually denoted by GF(p ).

n
n

n

F x + >



Example
Degree Irreducible 

Polynomial
1 (x+1),x

2 (x2+x+1)

3 (x3+x2+1), (x3+x+1)

4 (x4+x3+x2+x+1), 
(x4+x3+1),(x4+x+1)



Example of Multiplication
8

6 4 2 7

13 11 9 8 7 7 5 3 2

6 4 2

13 11

Compute the product of the elements 57 and 83 in GF(2 )
57=01010111, and 83=10000011. 
In polynomial notations we have, 
( 1) ( 1)

( ) ( )
( 1)

x x x x x x

x x x x x x x x x x

x x x x

x x

+ + + + × + +

= + + + + ⊕ + + + +

⊕ + + + +

= + + 9 8 6 5 4 3

13 11 9 8 6 5 4 3

7 6 8 4 3

1
and,
( 1)

1 (mod 1)

x x x x x x

x x x x x x x x

x x x x x x

+ + + + + +

+ + + + + + + +

≡ + + + + + +

87 131

87 131



Example of Multiplication

8

6 4 2 7

13 11 9 8 7 7 5 3 2

6 4 2

13 11

Compute the product of the elements 57 and 83 in GF(2 )
57=01010111, and 83=10000011. 
In polynomial notations we have, 
( 1) ( 1)

( ) ( )
( 1)

x x x x x x

x x x x x x x x x x

x x x x

x x

+ + + + × + +

= + + + + ⊕ + + + +

⊕ + + + +

= + + 9 8 6 5 4 3

13 11 9 8 6 5 4 3

7 6 8 4 3

1
and,
( 1)

1 (mod 1)

x x x x x x

x x x x x x x x

x x x x x x

+ + + + + +

+ + + + + + + +

≡ + + + + + +

87 131

87 131



Finite Field Multiplication
• Consider for example the field GF(24) with irreducible polynomial x4 + x + 

1 

• x5 + x + 1 is not in the field GF(24) 

• So, modular reduction  
	 	 (x5 + x + 1)mod(x4 + x + 1) = x2 + 1



Main Points in Multiplication
• Do binary multiplication 

• Bitwise AND for partial products 

• XOR your partial products (with proper shifts) 

• You can use any multiplier here — Karatsuba performs quite well. 

• Only you need to do XORs while combining the results of 
multiplications 

• You will have a large polynomial — for two n-1 degree polys the result 
will be of (max) degree 2n-2. 

• Now reduce with a the reduction poly of degree n.  



Squaring



Squaring?
• Let’s do it…



Multiplication Algorithms

• The choice of multiplier is determined by the application. 
• Montgomery  for example is suited for low resource 

environments. 
• If designed properly, the Karatsuba multiplier is the fastest.



Finite Field Multiplication
• There are several forms of : Karatsuba multiplier. We consider 

the combinational type which requires just a single clock cycle. 
• Two common types of combinational Karatsuba implementations. 

• Simple Karatsuba Multiplier. 
• General Karatsuba Multiplier.



Simple Karatsuba Multiplier



Recursive Simple Karatsuba Multiplier



General Karatsuba Multiplier
• Instead of splitting into two, splits into more than 

two. 
• For example, an m bit multiplier is split into m 

different multiplications.

A. Weimerskirch, Generalizations of the Karatsuba Algorithm for Efficient Implementations, Cryptology 
ePrint Archive, 2006



Karatsuba Multiplier
The multiplier operates on 233 bit inputs and 
gives a 465 bit outputs. 

The multiplier uses sub-multipliers, with 
operands as described in the figure. 

The initial multipliers are Simple Karatsuba 
based, however after a threshold of 29, it was 
realized by Generalized Karatsuba blocks. 



Module Multiplier in Verilog
module multiplier(a, b, d); 
input wire [232:0] a; 
input wire [232:0] b; 
output wire [232:0] d; 
wire [464:0] mout; 

ks233 ks(a, b, mout);           (Karatsuba Multiplier) 
mod   mod1(mout, d);         (Modulo Operation) 

endmodule



Comparing the General and Simple
● Hybrid Karatsuba Multiplier 
◦ For all recursions less than 29 use 

the General Karatsuba Multiplier or 
school book. 
◦ For all recursions greater than 29 

use the Simple Karatsuba multiplier

C. Rebeiro, Power Attack Resistant Efficient  FPGA  Architecture for Karatsuba Multiplier , VLSID 2008


