Implementation Security In Cryptography

Lecture 06: Finite Field and Hardware

Recap

- In the last lecture
 - Basics of Hardware Design

Today

• Finite Field — Mathematics and Hardware

Congruences

• What is $a \equiv b \mod n$?

Congruences

- What is $a \equiv b \mod n$?
 - $n \mid (b-a)$
- This is an equivalence relation
 - $a \equiv a \mod n \text{reflexive}$

- $a \equiv b \mod n \implies b \equiv a \mod n \text{symmetric}$
- $a \equiv b \mod n \land b \equiv c \mod n \implies a \equiv c \mod n \text{transitive}$
- Therefore, this relation will create disjoint partitions over the set of integers.

Residue Class

- $a \equiv b \mod n$
 - $\bullet \; n \, | \, (b-a)$
 - $a = b + kn, k \in \mathbb{Z}$
 - The equivalent classes are as follows:
 - *a mod n* consists of all integers that are obtain by adding (subtracting) kn with a.
 - Example: Let say n = 7
 - Residue class 1 mod 7 = $\{1, 1 \pm 7, 1 \pm 2 * 7, \dots\}$

Residue Class

- Set of all residue classes mod n
 - Denoted as Z/nZ
 - How many elements does this set have?

Residue Class

- Set of all residue classes mod n
 - Denoted as Z/nZ
 - How many elements does this set have?
 - [0], [1], [2] ,..., [n-1]
 - Now let's talk only in terms of these classes..

Some Important Theorems

- $a \equiv b \mod n$, and $c \equiv d \mod n$ implies
 - $-a \equiv -b \mod n$
 - $a + c \equiv b + d \mod n$
 - $ac \equiv bd \mod n$
- Try the proofs by yourself

Group

- A group is a mathematical structure with a (nonempty) set and a (binary) operator (G, +).
 - Closure: $a, b \in G \implies a + b \in G$
 - Associativity: $a, b, c \in G \implies a + (b + c) = (a + b) + c$
 - Identity: $\exists e \in G, \forall a \in G, a + e = e + a = a$
 - Inverse: $\forall a \in G, \exists a^{-1} \in G, a + a^{-1} = a^{-1} + a = e$
- A group is abelian or commutative if $\forall a, b \in G, a + b = b + a$

Examples

- The set of integers with +
 - The sums are also integers
 - a+(b+c) = (a+b)+c
 - 0 is the identity element
 - -a is the inverse of a.
- Does the set of integers form a group under multiplication?
- Set of rational numbers under multiplication?

What About the Residue Classes

- The set of residue classes form a group under "addition"
 - The addition is between classes: [a] + [b]
 - => a mod n + b mod n = (a + b) mod n

 It is closed 	$(\mathbb{Z}_3, +_3)$	[[0]] ₃	[[1]] ₃	[[2]] ₃
 It is associative 	[[0]] ₃	[[0]] ₃	[[1]] ₃	[[2]] ₃
• [0] is the identity	[[1]] ₃	[[1]] ₃	[[2]] ₃	[[0]] ₀
Inverse of [a] is basically [n a]	[[2]] ₃	[2] ₃	[[0]] ₃	$[\![1]\!]_3$

• Inverse of [a] is basically [n - a]

What About the Residue Classes

- The set of residue classes form a group under "addition"
 - The addition is between classes: [a] + [b]
 - => a mod $n + b \mod n = (a + b) \mod n$

• – 2 a mou n + p mou n – (a + p) mou n				
• It is closed	$(\mathbb{Z}_3,+_3)$	[[0]] ₃	$[[1]]_3$	[2] ₃
	[[0]] ₃	[[0]] ₃	[[1]] ₃	[2] ₃
 It is associative 	[1]] ₃	[1]] ₃	[2]] ₃	[[0]] 0
• [0] is the identity	[2] ₃	[2] ₃	$[[0]]_3$	[1]] ₃

- Inverse of [a] is basically [n a]
- The set of residue classes is also a group under multiplication **under** certain conditions

- We denote it by (($\mathbb{Z}/n\mathbb{Z}, \circ$) or ((\mathbb{Z}_n, \circ)
 - The addition is between classes: [a] * [b]
 - => (a mod n) * (b mod n) = (a + k1*n)(b + k2*n) = ab + a*k2*n + b*k1*n + k1*k2*n^2 = ab + (a*k2 + b*k1 + k1*k2*n)*n = ab + k3*n = [ab]
 - It is closed
 - It is associative (prove it)
 - [1] is the identity
 - But where is the inverse?????
- Turns out that inverse only exist for certain elements not for all
- Let's define this subset as \mathbb{Z}_n^* this indeed forms a group

• What are the elements of \mathbb{Z}_n^* ?

- What are the elements of \mathbb{Z}_n^* ?
 - Elements that are co-prime to n
 - Another way: gcd(a,n) = 1
- What happens if n is a prime, say p?

- What are the elements of \mathbb{Z}_n^* ?
 - Elements that are co-prime to n
 - Another way: gcd(a,n) = 1
- What happens if n is a prime, say p?
- $\bullet |\mathbb{Z}_n^*| = p 1$
- How many elements in \mathbb{Z}_n^* can be there if n is not a prime?
 - This number is called $\Phi(n) \text{Euler's Totient Function}$
 - Example: $\Phi(26)=13$, $\Phi(p)=p-1$, if p is prime

Fermat's Little Theorem

- If gcd(a, n) = 1, then $a^{\Phi(n)} = 1 \mod n$
 - That means for any element of \mathbb{Z}_n^* , we can raise it to the power of $\Phi(n)$ and end up in the identity element!!!
- Proof: Will not be discussed for the sake of time!! I can tell you later if you are interested..
- $a^{p-1} = 1 \mod p$, if p is prime.
- Interesting fact: $a^{p-2} = a^{-1} \mod p$

Small Examples

- Let's consider \mathbb{Z}_4^*
- What are the elements? [1], [3] let's abuse the notation and denote as 1,
 3
- $\Phi(4) = 2$
- So, let's see 3⁴ mod 4 = 81 mod 4 = 1 !!!
- Calculate: $2^{1000} \mod 13 = 2^{(83 \times 12)+4} \mod 13 = 16 \mod 13 = 3 \mod 13$

Ring

- Let's consider a (nonempty) set with two operations $(G, +, \circ)$
 - G is an abelian group under addition
 - G is closed under multiplication
 - Multiplication is associative
 - There is an identity element
 - But not every element has a multiplicative inverse (other than 0).
 - Also, multiplication is **distributive** on addition
 - $a \cdot (b + c) = (a \cdot b) + (a \cdot c)$ for all a, b, c in R (left distributivity).
 - $(b + c) \cdot a = (b \cdot a) + (c \cdot a)$ for all a, b, c in R (right distributivity)
 - If the multiplication is commutative we call it **commutative ring**

Example

- Consider \mathbb{Z}_n with + and
 - G is a ring if n is composite, there is no inverse unless gcd(a,n) = 1.
- Consider $\mathbb{Z}_4 2$ does not have an inverse no element can be multiplied with 2 giving 1. Rather 2*2 mods 4 = 0. 2 is, therefore, called a **zero divisor**.
- But then consider \mathbb{Z}_5 It is also a ring, but you can see that every element has an inverse.

Field

- Let's consider a (nonempty) set with two operations $(G, +, \circ)$
 - G is commutative ring with every element except 0 having a multiplicative inverse.
- Example:
 - Set of real numbers with addition and multiplication
 - Set of rational numbers with addition and multiplication
 - Set of complex numbers with addition and multiplication
 - Set of integers modulo a prime