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Lecture 09: Composite Field Mapping 



Recap

• In the last lecture 
• Finite Field Isomorphism



Today

• Composite field 
• Deeper dive into the inverse implementation 



Isomorphism
For two groups G1 and G2, a surjective function G1 
to G2 is said to be a homomorphism iff  

. 

 Note, the operators on the left and right are not 
the same.  

𝑓(𝑥 ∘ 𝑦) = 𝑓(𝑥) † 𝑓(𝑦)

An injective (one-to-one) homomorphism is called an isomorphism.

The idea of isomorphism can be extended to rings and fields. In these extensions the only 
difference is that the latter two are defined wrt. two operators, say (+,.). Thus, we say f: R1R2 
is say a field isomorphism iff: f(a+b)=f(a)+f(b), and f(a.b)=f(a).f(b) for every a and b in R1.



Defining Isomorphism 
• The fields are isomorphic and one can establish a mapping between say F1 and F2, 

by computing   

• The mapping  is thus used to construct the isomorphism, say T: F1F2  

• An example for c could be To verify compute: 

  

Now, note that for , we substitute 

𝑐 ∈ 𝐹2,  𝑠𝑡 .  𝑓1(𝑐) ≡ 0(𝑚𝑜𝑑 𝑓2) .

𝑧 → 𝑐

𝑐 = 𝑧2 + 𝑧 .  

𝑓1(𝑧2 + 𝑧) = (𝑧2 + 𝑧)4 + (𝑧2 + 𝑧) + 1 = 𝑧8 + 𝑧4 + 𝑧2 + 𝑧 + 1 (𝑚𝑜𝑑 𝑓2)

𝑚𝑜𝑑 𝑓2 𝑧4 = 𝑧3 + 1.

z4 = z3 +1⇒ z5 = z4 + z= z3 + z+1⇒ z6 = z4 + z2 + z= z3 + z2 + z+1
⇒ z8 = z6 +1= z3 + z2 + z.
Thus, f1(c) = z8 + z4 + z2 + z+1≡ 0(mod f2 )



Composite Fields

• The pair of the fields GF(2n) and GF(2n)m is called a composite field.  
• If there exists irreducible polynomials, Q(Y) of degree n and P(X) of 

degree m, which are used to extend GF(2) to GF(2n), and GF(2n)m from 
GF(2n). 
• The composite field GF(2n)m is isomorphic to the field GF(2k), where 

. 𝑘 = 𝑚 × 𝑛



Subfield Mappings
• A very popular design strategy is to implement the AES S-box in the 

sub-fields. 
• The field isomorphisms as follows are exploited: 

• The mappings vary depending on the choice of the basis: polynomial 
or normal.

GF(28) ≅GF(24 )2 ≅GF((22 )2 )2



Constructing Isomorphisms between Composite Fields 
(easy case)

• Let the primitive polynomial used to construct  be denoted by Q(Y). 
• Let  be the root. 

• Then the elements are  

• The primitive polynomial used to construct  is denoted by P(X). 
• Let  be the root. 

• Then the elements are  

• Arithmetic in the field , can be performed by modulo the 

primitive polynomial  

• If  is the root, then the elements can be expressed as: .

𝐺𝐹(2𝑛)
𝜔

{0,1, 𝜔, 𝜔2, ⋯, 𝜔2𝑛−2}

𝐺𝐹(2𝑛)𝑚

𝛼
{0,1, 𝛼, 𝛼2, ⋯, 𝛼2𝑛𝑚−1}

𝐺𝐹(2𝑘), 𝑘 = 𝑚 × 𝑛
𝑅(𝑧) = 𝑧𝑘 + 𝑟𝑘−1𝑧𝑘−1 + ⋯ + 1, 𝑟𝑖 ∈ 𝐺𝐹(2) 

𝛾 (1,𝛾, 𝛾2, ⋯, 𝛾𝑘−1)



Mapping from GF(2k) to GF(2n)m, where k=nm
• A simple method to obtain such a conversion is to find the primitive element of 

both the fields, GF(2k) and GF(2n)m. 

• The primitive elements are denoted by  and  respectively. 

• One checks: , and . 

• Thus, we establish the following mapping from GF(2k) to GF(2n)m: .  

• If the roots do not satisfy the polynomial R, we repeat the test for the next 
primitive element. 

• Subsequent mappings are easy to find: 
•

𝛾 𝛼

𝑅(𝛾) = 0 𝑅(𝛼)𝑚𝑜𝑑 𝑃 (𝑋)𝑄(𝑌 ) ≡ 0

𝛾 → 𝛼

𝐺𝐹(2𝑘) → 𝐺𝐹(2𝑛)𝑚:𝛾𝑖 → 𝛼𝑖,  0 ≤ 𝑖 ≤ 2𝑘 − 2



Algorithm
Input: n, m, Q(Y),P(X),R(Z) 
Output:  

1. Find primitive elements of  
2. For(  
             if(isPrimitive( & break; 
               end 
3. For(i=0;i< ;i++) 
          
         Map: 

𝐺𝐹(2𝑘) → 𝐺𝐹(2𝑛)𝑚,  𝑘 = 𝑛 × 𝑚
𝐺𝐹(2𝑘):𝛾

𝛼 = 1; 𝛼 < 2𝑛𝑚 − 1; ) 𝑑𝑜
𝛼) 𝑅(𝛼)𝑚𝑜𝑑 𝑄(𝑌 )𝑃(𝑋) ≡ 0) 

2𝑛𝑚 − 1
𝑎1 = 𝛼𝑖𝑚𝑜𝑑 𝑄(𝑌 )𝑃(𝑋),  𝑏1 = 𝛾𝑖𝑚𝑜𝑑 𝑅(𝑍)

b1 → a1



Example: 𝐺𝐹(24) → 𝐺𝐹(22)2

• , where 
 

• Note,  is used to construct , while P(X) is used to extend to the field 
GF(22)2. 

• First primitive element  is 2. It can be checked that ‘2’ can be used to 
generate all the non-zero elements of . 

• Likewise, the first primitive element of , st.  
is 4.  

• Hence, the map is: Also, 0 is mapped to 0.

𝑅(𝑍) = 𝑍4 + 𝑍 + 1, 𝑄(𝑌 ) = 𝑌 2 + 𝑌 + 1,𝑃 (𝑋) = 𝑋2 + 𝑋 + {2}
{2} ∈ 𝐺𝐹(22) .  

𝑄(𝑌 ) 𝐺𝐹(22)

𝛾 ∈ 𝐺𝐹(24)
𝐺𝐹(24)

𝐺𝐹(22)2 𝑅(𝑍) ≡ 0[𝑚𝑜𝑑 𝑄(𝑌 )𝑃 (𝑋)]

{2} → {4} .   



Example Isomorphic Mapping  𝐺𝐹(24) → 𝐺𝐹(22)2

Proof that {4}  is the correct choice. 

Note,  

∈ GF(22)2

{4} = 0100 = 𝑋
𝑅(𝑋) = 𝑋4 + 𝑋 + 1 𝑚𝑜𝑑 𝑄(𝑌 )𝑃 (𝑋) .  

For checking, express 3 as Y+1, and 2 as Y. Thus, 

with the irreducible polynomial we have 

3.2 𝑖𝑛 𝐺𝐹(22),  
𝑄(𝑌 ) = 𝑌 2 + 𝑌 + 1, 

𝑌(𝑌 + 1) = 1.

X2 = X + {2} ⟹ X3 = 3X + {2} ⟹ X4 = {3}X2 + {2}X = {3}(X + {2}) + {2}X = X + 1 ⟹ R(4) = 0 mod Q(Y )P(X )



An Efficient Conversion Algorithm

• Maps  

• Returns a binary , 0-1 matrix T, which performs the mapping.  
• Evidently, the inverse of T does the reverse mapping. 
• The mapping works by relating only k elements (rather than 2k). 
• It maps the basis vectors.

𝐺𝐹(2𝑘) → 𝐺𝐹(2𝑛)𝑚,  𝑘 = 𝑛 × 𝑚
𝑘 × 𝑘



The Mapping Matrix

T =

1 0 0 0
1 1 1 0
1 1 0 0
0 0 0 1



Map
Inverse in 

Composite Field 
eg. In GF((24)2)

Reverse 
Mapx Sbox(x)

AES in Composite Fields
• AES uses the binary finite field GF(28) with 

irreducible polynomial 
• The AES field GF(28) is isomorphic to the field 

GF((24)2) and even GF(((22)2)2) 
• This means that we could find the inverse of    
     x Є GF(28) by using a smaller field (eg. GF(24)) 

• Thus smaller tables or equations required

1348 ++++ xxxx

Affine 
Transform



• Let the reduction polynomials are as follows: 

• :  

• . Here , where  is a primitive 
element in  — just a choice.  — again a choice 

•  

• An element in  is represented as , where  

• In polynomial basis, the element can be represented as  where  is 
a root of 

GF(28) Z8 + Z4 + Z3 + Z + 1

GF(24)2 : Y2 + τY + μ μ = ω14 ω = (0010)2
𝐺𝐹(24) τ = 1

GF(24) : X4 + X + 1

GF(24)2 γ1Y + γ0 γ0, γ1 ∈ GF(24)
(γ1y + γ0) y

Y2 + τY + μ

Transforming GF(28) to GF(24)2 



Transforming GF(28) to GF(24)2 
• Previous easy technique works when all field polynomials are primitive. 
• However, in case of AES the field polynomial 

 is irreducible but not primitive. 

• Since the field is small exhaustive technique can be applied to find a 
primitive element. 

• Basic idea was mapping a primitive element of , say  to a 

primitive element of , say . 

• For the remaining elements we map  

𝑅(𝑧) = 𝑧8 + 𝑧4 + 𝑧3 + 𝑧 + 1

𝐺𝐹(28) 𝛾
𝐺𝐹(24)2 𝛼

𝛾𝑖 → 𝛼𝑖,  ∀𝑖 ∈ [0,⋯,  255]



An Example T from GF(28) to GF(24)2

Consider ie can be denoted as (0000 0010). 
Thus, T(2) would be in GF(24)2, ie. (0010 1110)

2 ∈ 𝐺𝐹(28),  

Atri Rudra, Pradeep K. Dubey, Charanjit S. Jutla, Vijay Kumar, Josyula R. Rao, Pankaj 
Rohatgi:Efficient Rijndael Encryption Implementation with Composite Field Arithmetic. CHES 
2001: 171-184



Pause
• Ok, we have mapped the element to  no what?? 

• Let’s try to see why we did so
GF(24)2



Finite Field Inversion in GF(24)2

• Let us consider an element  and its inverse  

• Reduction poly is  

• Then,  

γ1Y + γ0 δ1Y + δ0

(γ1Y + γ0)(δ1Y + δ0) = 1 mod r(Y )
r(Y ) = Y2 + τY + μ



Finite Field Inversion in GF(24)2

• Let us consider an element  and its inverse  

• Reduction poly is  

• Then,  

γ1Y + γ0 δ1Y + δ0

(γ1Y + γ0)(δ1Y + δ0) = 1 mod r(Y )
r(Y ) = Y2 + τY + μ



Finite Field Inversion in GF(24)2

• From here, we can write, 



Finite Field Inversion in GF(24)2

• From here, we can write, 



What just happened?

• Ok, we still have to compute inverse !! 
• But?



What just happened?

• Ok, we still have to compute inverse !! 

• But, in  

• So, overall, we are able to represent a  inverse in terms of 
 inverses. 

• But there are still some multiplications, XORs etc. 
• Also, remember that we are still operating in polynomial basis.. 

GF(24)

GF(28)
GF(24)



Circuit Optimization in Polynomial Basis

• Let the irreducible polynomial of an element in be 

, and let an element in the composite field be:              
 

• As discussed before,  

                 

                 

• As  appears in both equations we set it to 1.  

𝐺𝐹(24)2

𝑟(𝑌 ) = 𝑌 2 + 𝜏𝑌 + 𝜇
𝛾 = (𝛾1𝑌 + 𝛾0) .

𝛿0 = (𝛾0 + 𝛾1𝜏)(𝛾2
0 + 𝛾0𝛾1𝜏 + 𝛾2

1𝜇)−1

𝛿1 = 𝛾1(𝛾2
0 + 𝛾0𝛾1𝜏 + 𝛾2

1𝜇)−1

𝜏



Bases
• Represented using two types of bases:  

• Polynomial base: Let p(x) be an irreducible polynomial over GF(2m), and let 
be the root of p(x). Then the set:  is called the polynomial 
base. 
• Normal base: Let p(x) be an irreducible polynomial over GF(2m), and let be 

the root of p(x). Then the set:  is called the normal base, 
if the m elements are linearly independent. 

• For  

• For 

𝛼 
{1,𝛼, 𝛼2, ⋯, 𝛼𝑚−1}

𝛼 
{𝛼, 𝛼2, 𝛼22, ⋯, 𝛼2𝑚−1}

𝐺𝐹(𝑝𝑘):{𝛼𝑝0, 𝛼𝑝1, ⋯,  𝛼𝑝𝑘−1}
𝐺𝐹(24)2:{𝛼, 𝛼16}



S-box Based on Composite Fields
S-box Approach

S-box 
Approach

No. of 
Slices

Critical 
Path

Gate 
Count

table based 64 11.9ns 1128

Composite 
Field based

30 18.3ns 312

Performance of S-boxes on FPGA*

XOR NAND NOR Total Gates in terms 
of NAND 

(using std cell lib)

80 34 6 180

Gate Count for composite Sbox#

#  D. Canright, A Very Compact S-box for AES, CHES-2005 
* Simulation Results using Xilinx ISE



Polynomial  Inverter𝐺𝐹(28)

𝛿0 = (𝛾0 + 𝛾1)(𝛾0(𝛾0 + 𝛾1) + 𝜇𝛾2
1)

−1

𝛿1 = 𝛾1(𝛾0(𝛾0 + 𝛾1) + 𝜇𝛾2
1)−1

Multiplier𝐺𝐹(24)

Inversion𝐺𝐹(24)

Multiplier𝐺𝐹(24)

Multiplier𝐺𝐹(24)Scaling: Multiplication with 
constant



Scaling and Squaring (Implementing 𝜇𝛾2)
• The products in  is similarly performed by expressing as elements in .  

• Consider the product of two elements:                                                                        
, and , using the irreducible polynomial                

, we have: 

)(

• For scaling, proper choices of the constant  can lead to interesting scopes for 
optimizations. We set,  in . Note, , as then  cannot make 
the polynomial  irreducible over  

• Further, we choose to simplify the scaling operation.

𝐺𝐹(24) 𝐺𝐹(22)2

𝛾 = Γ1𝑍 + Γ0 𝛿 = Δ1𝑍 + Δ0
𝑠(𝑍) = 𝑍2 + 𝑍 + 𝑁

(Γ1𝑍 + Γ0 Δ1𝑍 + Δ0) = Z(Γ0Δ0 + (Γ1 + Γ0)(Δ1 + Δ0)) + (Γ0Δ0 + 𝑁Γ1Δ1)

𝜇
Δ0 = 0 𝜇 = Δ1𝑍 + Δ0 Δ1 ≠ 0 𝜇

𝑟(𝑌 ) 𝐺𝐹(24) .

𝑁 = Δ−1
1 ,  



Scaling and Squaring (Implementing 𝜇𝛾2)
• The choice of N makes the polynomial  irreducible 

over . 

• Thus, N is the root of , and the roots cannot be 0, 1.  

• They are denoted as N, N+1 (note that the sum is 1). 

• Depending on the roots chosen for the polynomial basis (W,1), thus either 
 or   

• Note,  This leads to very efficient scaling and 
squaring circuits.

𝑠(𝑍) = 𝑍2 + 𝑍 + 𝑁
𝐺𝐹(22)

𝑡(𝑊 ) = 𝑊 2 + 𝑊 + 1

𝑁 = 𝑊, 𝑁2 = 𝑁 + 1 = 𝑊 .
𝑁−1 = 𝑁2 = 𝑁 + 1.



Scaling and Squaring (Implementing 𝜇𝛾2)
•

• Substituting, , thus we have: 
•

𝜇𝛾2 = 𝜇(Γ1𝑍 + Γ0)2 = 𝜇(Γ2
1𝑍 + (Γ2

0 + 𝑁Γ2
1))

𝜇 = Δ1𝑍 = 𝑁−1𝑍 = 𝑁2𝑍



Operations in 𝐺𝐹(22)
• Reducing with polynomial . 

• Thus we have for ,  

• Note the compact expression above. 
• Now the multiplications and additions are in GF(2) and are thus 

equivalent to AND and XOR gates respectively (Finally!!!)

𝑡(𝑊 ) = 𝑊 2 + 𝑊 + 1
Γ = 𝑔1𝑊 + 𝑔0,  Δ = 𝑑1𝑊 + 𝑑0

(𝑔1𝑊 + 𝑔0)(𝑑1𝑊 + 𝑑0) = 𝑊(𝑔1𝑑1 + 𝑔1𝑑0 + 𝑔0𝑑1) + (𝑔1𝑑1 + 𝑔0𝑑0) = 𝑊(𝑔0𝑑0 + (𝑔1 + 𝑔0)(𝑑1 + 𝑑0)) + (𝑔0𝑑0 + 𝑔1𝑑1)



Squaring and Scaling is Free in  𝐺𝐹(22)
• Like before, we can also combine the squaring and multiplication 

operations for efficiency.  

• Thus, assuming ,  𝑁 = 𝑊
𝑊 Γ2 = 𝑊(𝑔1𝑊 + 𝑔0)2 = 𝑊(𝑔1𝑊 + (𝑔0 + 𝑔1)) = (𝑔1 + (𝑔1 + 𝑔0))𝑊 + 𝑔1 = 𝑔0𝑊 + 𝑔1

Thus, we see that the squaring and scaling operation is free in the polynomial basis of !!! 𝐺𝐹(22)



Back to Squaring and Scaling in 𝐺𝐹(22)
• The scaling operation to compute  can be computed using the fact 

 or . 

• Assuming,  thus: 

𝑁Γ
𝑁 = 𝑊 𝑁 = 𝑊 2

𝑁 = 𝑊
𝑊(𝑔1𝑊 + 𝑔0) = 𝑊(𝑔1 + 𝑔0) + 𝑔1

𝑊 2(𝑔1𝑊 + 𝑔0) = 𝑔0𝑊 + (𝑔0 + 𝑔1)



Final look at the square and scaling in 𝐺𝐹(24)
•
• Portions with { } are free! 
• Thus the entire operation can be done with one addition and two 

scaling operations.

𝜇𝛾2 = 𝑍(𝑁Γ2
1 + 𝑁2Γ2

0) + Γ2
1 = 𝑍({𝑁Γ2

1} + 𝑁{𝑁Γ2
0}) + 𝑁2{𝑁Γ2

1}



Polynomial  Inverter𝐺𝐹(24)
• The inverse of an element in  is denoted as: 

• Thus, 

 

  
 

𝐺𝐹(22)2

Δ = (Γ1𝑍 + Γ0)−1 = (Δ1𝑍 + Δ0)𝑚𝑜𝑑(𝑍2 + 𝑍 + 𝑁)

Δ0 = (Γ0 + Γ1)(Γ0(Γ0 + Γ1) + Γ2
1𝑁)−1

Δ1 = Γ1(Γ0(Γ0 + Γ1) + Γ2
1𝑁)−1

Multiplier𝐺𝐹(22)

Multiplier𝐺𝐹(22)

Multiplier𝐺𝐹(22)

Scaling: Multiplication with 
constant



Inversion in 𝐺𝐹(22)
• Like before, we can obtain the inversion in a similar fashion. 

• Thus, for an element in , say we have 
. 

• The irreducible polynomial is  

• Thus,  
• For  

• Similarly,  

• Note the special case of inverse of 0, is handled by these equations implicitly by 
resulting 0 output.

𝐺𝐹(22) 𝐺 = 𝑔1𝑊 + 𝑔0,  
𝐷 = 𝐺−1 = (𝑑1𝑊 + 𝑑0),  𝑑1, 𝑑0 ∈ 𝐺𝐹(2)

𝑡(𝑊 ) = 𝑊 2 + 𝑊 + 1.

𝑑0 = (𝑔0 + 𝑔1)(𝑔2
0 + 𝑔0𝑔1 + 𝑔2

1)−1 = (𝑔0 + 𝑔1)(𝑔0 + 𝑔0𝑔1 + 𝑔1) = (𝑔0 + 𝑔1)
𝑔 ∈ 𝐺𝐹(2), 𝑔2 = 𝑔,  𝑔−1 = 𝑔 .

𝑑1 = 𝑔1(𝑔0 + 𝑔0𝑔1 + 𝑔1) = 𝑔1



Field Isomorphism between  and𝐺𝐹(28)
• We present another way for this mapping. 

• Say an element , which is the standard representation of an 
element of the state matrix of AES, is denoted by the byte (  

• The polynomial representation is:  

• We map the element to a new element  in a new basis. 

• In polynomial basis thus for , we have 
 

• That is, for each , 

𝑔 ∈ 𝐺𝐹(28)
𝑔7𝑔6⋯𝑔0) .

𝑔7𝑋7 + 𝑔6𝑋6 + ⋯ + 𝑔1𝑋 + 𝑔0 .
(𝑏7𝑏6⋯𝑏0)

𝑔 ∈ 𝐺𝐹(28)/𝐺𝐹(24)
𝑔 = 𝛾1𝑌 + 𝛾0,   𝑤h𝑒𝑟𝑒 𝛾1, 𝛾0 ∈ 𝐺𝐹(24)/𝐺𝐹(22)

𝛾 ∈ 𝐺𝐹(24)/𝐺𝐹(22) 𝛾 = Γ1𝑍 + Γ0 .

GF((22 )2 )2



Field Isomorphism between  and𝐺𝐹(28)
• Further each element  can be viewed as  and can 

be represented as a pair of bits . 

• Thus the relation between the two byte representations of  is as follows: 

Γ ∈ 𝐺𝐹(22) (𝑏1𝑊 + 𝑏0),
(𝑏1, 𝑏0)

𝑔

GF((22 )2 )2



Field Isomorphism between  and𝐺𝐹(28)
• The mapping is decided for a choice of the basis denoted as  

• These values are fixed by the choice of the parameters  and  

• As an example, consider then the basis 
choices are  

• As an example to justify these values: take N=0XBC=(1011 1100)=
 

• Remember that N has to be a root of the irreducible polynomial of . 

• Substitute N in  and perform modulo the AES polynomial 

(𝑌, 𝑍, 𝑊 ) .
𝜇 𝑁 .

𝜇 = 0𝑋𝐸𝐶,  𝑁 = 0𝑋𝐵𝐶,  
𝑌 = 0𝑋𝐹𝐹, 𝑍 = 0𝑋5𝐶, 𝑊 = 0𝑋𝐵𝐷 .

𝑥7 + 𝑥5 + 𝑥4 + 𝑥3 + 𝑥2

𝐺𝐹(22)
𝑊 2 + 𝑊 + 1,

𝑥8 + 𝑥4 + 𝑥3 + 𝑥 + 1

GF((22 )2 )2



Checking for N
•
• +1

• Using, as the reduction polynomial, thus we substitute 
 

• Thus, , and 
 

• Thus,

𝑁2 = 𝑥14 + 𝑥10 + 𝑥8 + 𝑥6 + 𝑥4

𝑁 + 1 = 𝑥7 + 𝑥5 + 𝑥4 + 𝑥3 + 𝑥2

𝑥8 + 𝑥4 + 𝑥3 + 𝑥 + 1 
𝑥8 = 𝑥4 + 𝑥3 + 𝑥 + 1 ⇒ 𝑥9 = 𝑥5 + 𝑥4 + 𝑥2 + 𝑥

𝑥10 = 𝑥6 + 𝑥5 + 𝑥3 + 𝑥2

𝑥14 = 𝑥10 + 𝑥9 + 𝑥7 + 𝑥6 = (𝑥6 + 𝑥5 + 𝑥3 + 𝑥2) + (𝑥5 + 𝑥4 + 𝑥2 + 𝑥) + 𝑥7 + 𝑥6 = 𝑥7 + 𝑥4 + 𝑥3 + 𝑥



Checking for N



The Resultant Mapping

This mapping denoted as X  is from the field GF((22 )2 )2  to GF(28 ).
The inverse mapping can be obtained by computing the inverse 
of the above matrix.

#  D. Canright, A Very Compact S-box for AES, CHES-2005


