
Chapter 2

Perfectly Secret Encryption

In the previous chapter we presented historical encryption schemes and showed
how they can be broken with little computational effort. In this chapter, we
look at the other extreme and study encryption schemes that are provably se-
cure even against an adversary with unbounded computational power. Such
schemes are called perfectly secret. Besides rigorously defining the notion, we
will explore conditions under which perfect secrecy can be achieved. (Begin-
ning in this chapter, we assume familiarity with basic probability theory. The
relevant notions are reviewed in Appendix A.3.)

The material in this chapter belongs, in some sense, more to the world of
“classical” cryptography than to the world of “modern” cryptography. Be-
sides the fact that all the material introduced here was developed before the
revolution in cryptography that took place in the mid-1970s and 1980s, the
constructions we study in this chapter rely only on the first and third prin-
ciples outlined in Section 1.4. That is, precise mathematical definitions are
used and rigorous proofs are given, but it will not be necessary to rely on
any unproven computational assumptions. It is clearly advantageous to avoid
such assumptions; we will see, however, that doing so has inherent limitations.
Thus, in addition to serving as a good basis for understanding the principles
underlying modern cryptography, the results of this chapter also justify our
later adoption of all three of the aforementioned principles.

Beginning with this chapter, we will define security and analyze schemes us-
ing probabilistic experiments involving algorithms making randomized choices;
a basic example is given by communicating parties’ choosing a random key.
Thus, before returning to the subject of cryptography per se, we briefly discuss
the issue of generating randomness suitable for cryptographic applications.

Generating randomness. Throughout the book, we will simply assume
that parties have access to an unlimited supply of independent, unbiased
random bits. In practice, where do these random bits come from? In principle,
one could generate a small number of random bits by hand, e.g., by flipping
a fair coin. But such an approach is not very convenient, nor does it scale.

Modern random-number generation proceeds in two steps. First, a “pool”
of high-entropy data is collected. (For our purposes a formal definition of
entropy is not needed, and it suffices to think of entropy as a measure of
unpredictability.) Next, this high-entropy data is processed to yield a sequence
of nearly independent and unbiased bits. This second step is necessary since
high-entropy data is not necessarily uniform.

25

26 Introduction to Modern Cryptography

For the first step, some source of unpredictable data is needed. There are
several ways such data can be acquired. One technique is to rely on external
inputs, for example, delays between network events, hard-disk access times,
keystrokes or mouse movements made by the user, and so on. Such data is
likely to be far from uniform, but if enough measurements are taken the re-
sulting pool of data is expected to have sufficient entropy. More sophisticated
approaches—which, by design, incorporate random-number generation more
tightly into the system at the hardware level—have also been used. These rely
on physical phenomena such as thermal/shot noise or radioactive decay. In-
tel has recently developed a processor that includes a digital random-number
generator on the processor chip and provides a dedicated instruction for ac-
cessing the resulting random bits (after they have been suitably processed to
yield independent, unbiased bits, as discussed next).

The processing needed to “smooth” the high-entropy data to obtain (nearly)
uniform bits is a non-trivial one, and is discussed briefly in Section 5.6.4. Here,
we just give a simple example to give an idea of what is done. Imagine that our
high-entropy pool results from a sequence of biased coin flips, where “heads”
occurs with probability p and “tails” with probability 1− p. (We do assume,
however, that the result of any coin flip is independent of all other coin flips.
In practice this assumption is typically not valid.) The result of 1,000 such
coin flips certainly has high entropy, but is not close to uniform. We can
obtain a uniform distribution by considering the coin flips in pairs: if we see
a head followed by a tail then we output “0,” and if we see a tail followed by
a head then we output “1.” (If we see two heads or two tails in a row, we
output nothing, and simply move on to the next pair.) The probability that
any pair results in a “0” is p · (1−p), which is exactly equal to the probability
that any pair results in a “1,” and we thus obtain a uniformly distributed
output from our initial high-entropy pool.

Care must be taken in how random bits are produced, and using poor
random-number generators can often leave a good cryptosystem vulnerable
to attack. One should use a random-number generator that is designed for
cryptographic use, rather than a “general-purpose” random-number generator,
which is not suitable for cryptographic applications. In particular, the rand()
function in the C stdlib.h library is not cryptographically secure, and using
it in cryptographic settings can have disastrous consequences.

2.1 Definitions

We begin by recalling and expanding upon the syntax that was introduced
in the previous chapter. An encryption scheme is defined by three algorithms
Gen, Enc, and Dec, as well as a specification of a (finite) message space M

Perfectly Secret Encryption 27

with |M| > 1.1 The key-generation algorithm Gen is a probabilistic algorithm
that outputs a key k chosen according to some distribution. We denote by
K the (finite) key space, i.e., the set of all possible keys that can be output
by Gen. The encryption algorithm Enc takes as input a key k ∈ K and a
message m ∈ M, and outputs a ciphertext c. We now allow the encryption
algorithm to be probabilistic (so Enck(m) might output a different ciphertext
when run multiple times), and we write c ← Enck(m) to denote the possibly
probabilistic process by which message m is encrypted using key k to give
ciphertext c. (In case Enc is deterministic, we may emphasize this by writing
c := Enck(m). Looking ahead, we also sometimes use the notation x ← S
to denote uniform selection of x from a set S.) We let C denote the set
of all possible ciphertexts that can be output by Enck(m), for all possible
choices of k ∈ K and m ∈ M (and for all random choices of Enc in case it
is randomized). The decryption algorithm Dec takes as input a key k ∈ K
and a ciphertext c ∈ C and outputs a message m ∈ M. We assume perfect
correctness, meaning that for all k ∈ K, m ∈M, and any ciphertext c output
by Enck(m), it holds that Deck(c) = m with probability 1. Perfect correctness
implies that we may assume Dec is deterministic without loss of generality,
since Deck(c) must give the same output every time it is run. We will thus
write m := Deck(c) to denote the process of decrypting ciphertext c using
key k to yield the message m.

In the definitions and theorems below, we refer to probability distributions
over K,M, and C. The distribution over K is the one defined by running Gen
and taking the output. (It is almost always the case that Gen chooses a key
uniformly from K and, in fact, we may assume this without loss of generality;
see Exercise 2.1.) We letK be a random variable denoting the value of the key
output by Gen; thus, for any k ∈ K, Pr[K = k] denotes the probability that
the key output by Gen is equal to k. Similarly, we let M be a random variable
denoting the message being encrypted, so Pr[M = m] denotes the probability
that the message takes on the value m ∈ M. The probability distribution of
the message is not determined by the encryption scheme itself, but instead
reflects the likelihood of different messages being sent by the parties using the
scheme, as well as an adversary’s uncertainty about what will be sent. As
an example, an adversary may know that the message will either be attack

today or don’t attack. The adversary may even know (by other means)
that with probability 0.7 the message will be a command to attack and with
probability 0.3 the message will be a command not to attack. In this case, we
have Pr[M = attack today] = 0.7 and Pr[M = don’t attack] = 0.3.

K and M are assumed to be independent, i.e., what is being communicated
by the parties is independent of the key they happen to share. This makes
sense, among other reasons, because the distribution over K is determined by

1If |M| = 1 there is only one message and no point in communicating, let alone encrypting.

28 Introduction to Modern Cryptography

the encryption scheme itself (since it is defined by Gen), while the distribution
overM depends on the context in which the encryption scheme is being used.

Fixing an encryption scheme and a distribution overM determines a dis-
tribution over the space of ciphertexts C given by choosing a key k ∈ K (ac-
cording to Gen) and a message m ∈M (according to the given distribution),
and then computing the ciphertext c ← Enck(m). We let C be the random
variable denoting the resulting ciphertext and so, for c ∈ C, write Pr[C = c]
to denote the probability that the ciphertext is equal to the fixed value c.

Example 2.1
We work through a simple example for the shift cipher (cf. Section 1.3). Here,
by definition, we have K = {0, . . . , 25} with Pr[K = k] = 1/26 for each k ∈ K.

Say we are given the following distribution overM:

Pr[M = a] = 0.7 and Pr[M = z] = 0.3.

What is the probability that the ciphertext is B? There are only two ways this
can occur: either M = a and K = 1, or M = z and K = 2. By independence
of M and K, we have

Pr[M = a ∧K = 1] = Pr[M = a] · Pr[K = 1]

= 0.7 ·
(

1

26

)
.

Similarly, Pr[M = z ∧K = 2] = 0.3 ·
(

1
26

)
. Therefore,

Pr[C = B] = Pr[M = a ∧K = 1] + Pr[M = z ∧K = 2]

= 0.7 ·
(

1

26

)
+ 0.3 ·

(
1

26

)
= 1/26.

We can calculate conditional probabilities as well. For example, what is
the probability that the message a was encrypted, given that we observe
ciphertext B? Using Bayes’ Theorem (Theorem A.8) we have

Pr[M = a | C = B] =
Pr[C = B |M = a] · Pr[M = a]

Pr[C = B]

=
0.7 · Pr[C = B |M = a]

1/26
.

Note that Pr[C = B |M = a] = 1/26, since if M = a then the only way C = B

can occur is if K = 1 (which occurs with probability 1/26). We conclude that
Pr[M = a | C = B] = 0.7. ♦

Example 2.2
Consider the shift cipher again, but with the following distribution overM:

Pr[M = kim] = 0.5, Pr[M = ann] = 0.2, Pr[M = boo] = 0.3.

Perfectly Secret Encryption 29

What is the probability that C = DQQ? The only way this ciphertext can
occur is if M = ann and K = 3, or M = boo and K = 2, which happens with
probability 0.2 · 1/26 + 0.3 · 1/26 = 1/52.

So what is the probability that ann was encrypted, conditioned on observ-
ing the ciphertext DQQ? A calculation as above using Bayes’ Theorem gives
Pr[M = ann | C = DQQ] = 0.4. ♦

Perfect secrecy. We are now ready to define the notion of perfect secrecy.
We imagine an adversary who knows the probability distribution over M;
that is, the adversary knows the likelihood that different messages will be
sent. This adversary also knows the encryption scheme being used; the only
thing unknown to the adversary is the key shared by the parties. A message
is chosen by one of the honest parties and encrypted, and the resulting ci-
phertext transmitted to the other party. The adversary can eavesdrop on the
parties’ communication, and thus observe this ciphertext. (That is, this is a
ciphertext-only attack, where the attacker gets only a single ciphertext.) For
a scheme to be perfectly secret, observing this ciphertext should have no effect
on the adversary’s knowledge regarding the actual message that was sent; in
other words, the a posteriori probability that some message m ∈ M was sent,
conditioned on the ciphertext that was observed, should be no different from
the a priori probability that m would be sent. This means that the cipher-
text reveals nothing about the underlying plaintext, and the adversary learns
absolutely nothing about the plaintext that was encrypted. Formally:

DEFINITION 2.3 An encryption scheme (Gen,Enc,Dec) with message
spaceM is perfectly secret if for every probability distribution overM, every
message m ∈M, and every ciphertext c ∈ C for which Pr[C = c] > 0:

Pr[M = m | C = c] = Pr[M = m].

(The requirement that Pr[C = c] > 0 is a technical one needed to prevent
conditioning on a zero-probability event.)

We now give an equivalent formulation of perfect secrecy. Informally, this
formulation requires that the probability distribution of the ciphertext does
not depend on the plaintext, i.e., for any two messages m,m′ ∈M the distri-
bution of the ciphertext when m is encrypted should be identical to the distri-
bution of the ciphertext whenm′ is encrypted. Formally, for everym,m′ ∈M,
and every c ∈ C,

Pr[EncK(m) = c] = Pr[EncK(m′) = c] (2.1)

(where the probabilities are over choice of K and any randomness of Enc).
This implies that the ciphertext contains no information about the plaintext,
and that it is impossible to distinguish an encryption of m from an encryption
of m′, since the distributions over the ciphertext are the same in each case.

30 Introduction to Modern Cryptography

LEMMA 2.4 An encryption scheme (Gen,Enc,Dec) with message space
M is perfectly secret if and only if Equation (2.1) holds for every m,m′ ∈M
and every c ∈ C.

PROOF We show that if the stated condition holds, then the scheme
is perfectly secret; the converse implication is left to Exercise 2.4. Fix a
distribution overM, a messagem, and a ciphertext c for which Pr[C = c] > 0.
If Pr[M = m] = 0 then we trivially have

Pr[M = m | C = c] = 0 = Pr[M = m].

So, assume Pr[M = m] > 0. Notice first that

Pr[C = c |M = m] = Pr[EncK(M) = c |M = m] = Pr[EncK(m) = c],

where the first equality is by definition of the random variable C, and the

second is because we condition on the event that M is equal to m. Set δc
def
=

Pr[EncK(m) = c] = Pr[C = c |M = m]. If the condition of the lemma holds,
then for every m′ ∈M we have Pr[EncK(m′) = c] = Pr[C = c |M = m′] = δc.
Using Bayes’ Theorem (see Appendix A.3), we thus have

Pr[M = m | C = c] =
Pr[C = c |M = m] · Pr[M = m]

Pr[C = c]

=
Pr[C = c |M = m] · Pr[M = m]∑

m′∈M Pr[C = c |M = m′] · Pr[M = m′]

=
δc · Pr[M = m]∑

m′∈M δc · Pr[M = m′]

=
Pr[M = m]∑

m′∈M Pr[M = m′]
= Pr[M = m],

where the summation is over m′ ∈ M with Pr[M = m′] 6= 0. We conclude
that for every m ∈ M and c ∈ C for which Pr[C = c] > 0, it holds that
Pr[M = m | C = c] = Pr[M = m], and so the scheme is perfectly secret.

Perfect (adversarial) indistinguishability. We conclude this section by
presenting another equivalent definition of perfect secrecy. This definition is
based on an experiment involving an adversary passively observing a cipher-
text and then trying to guess which of two possible messages was encrypted.
We introduce this notion since it will serve as our starting point for defining
computational security in the next chapter. Indeed, throughout the rest of
the book we will often use experiments of this sort to define security.

In the present context, we consider the following experiment: an adver-
sary A first specifies two arbitrary messages m0,m1 ∈ M. One of these two

Perfectly Secret Encryption 31

messages is chosen uniformly at random and encrypted using a random key;
the resulting ciphertext is given to A. Finally, A outputs a “guess” as to
which of the two messages was encrypted; A succeeds if it guesses correctly.
An encryption scheme is perfectly indistinguishable if no adversary A can suc-
ceed with probability better than 1/2. (Note that, for any encryption scheme,
A can succeed with probability 1/2 by outputting a uniform guess; the re-
quirement is simply that no attacker can do any better than this.) We stress
that no limitations are placed on the computational power of A.

Formally, let Π = (Gen,Enc,Dec) be an encryption scheme with message
spaceM. Let A be an adversary, which is formally just a (stateful) algorithm.
We define an experiment PrivKeav

A,Π as follows:

The adversarial indistinguishability experiment PrivKeav
A,Π:

1. The adversary A outputs a pair of messages m0,m1 ∈M.

2. A key k is generated using Gen, and a uniform bit b ∈ {0, 1}
is chosen. Ciphertext c ← Enck(mb) is computed and given
to A. We refer to c as the challenge ciphertext.

3. A outputs a bit b′.

4. The output of the experiment is defined to be 1 if b′ = b,
and 0 otherwise. We write PrivKeav

A,Π = 1 if the output of the
experiment is 1 and in this case we say that A succeeds.

As noted earlier, it is trivial for A to succeed with probability 1/2 by out-
putting a random guess. Perfect indistinguishability requires that it is impos-
sible for any A to do better.

DEFINITION 2.5 Encryption scheme Π = (Gen,Enc,Dec) with message
space M is perfectly indistinguishable if for every A it holds that

Pr
[
PrivKeav

A,Π = 1
]
=

1

2
.

The following lemma states that Definition 2.5 is equivalent to Defini-
tion 2.3. We leave the proof of the lemma as Exercise 2.5.

LEMMA 2.6 Encryption scheme Π is perfectly secret if and only if it is
perfectly indistinguishable.

Example 2.7
We show that the Vigenère cipher is not perfectly indistinguishable, at least
for certain parameters. Concretely, let Π denote the Vigenère cipher for the
message space of two-character strings, and where the period is chosen uni-
formly in {1, 2}. To show that Π is not perfectly indistinguishable, we exhibit
an adversary A for which Pr

[
PrivKeav

A,Π = 1
]
> 1

2 .

32 Introduction to Modern Cryptography

Adversary A does:

1. Output m0 = aa and m1 = ab.

2. Upon receiving the challenge ciphertext c = c1c2, do the following: if
c1 = c2 output 0; else output 1.

Computation of Pr
[
PrivKeav

A,Π = 1
]
is tedious but straightforward.

Pr
[
PrivKeav

A,Π = 1
]

=
1

2
· Pr

[
PrivKeav

A,Π = 1 | b = 0
]
+

1

2
· Pr

[
PrivKeav

A,Π = 1 | b = 1
]

=
1

2
· Pr[A outputs 0 | b = 0] +

1

2
· Pr[A outputs 1 | b = 1], (2.2)

where b is the uniform bit determining which message gets encrypted. A
outputs 0 if and only if the two characters of the ciphertext c = c1c2 are
equal. When b = 0 (so m0 = aa is encrypted) then c1 = c2 if either (1) a key
of period 1 is chosen, or (2) a key of period 2 is chosen, and both characters
of the key are equal. The former occurs with probability 1

2 , and the latter
occurs with probability 1

2 · 1
26 . So

Pr[A outputs 0 | b = 0] =
1

2
+

1

2
· 1
26
≈ 0.52.

When b = 1 then c1 = c2 only if a key of period 2 is chosen and the first
character of the key is one more than the second character of the key, which
happens with probability 1

2 · 1
26 . So

Pr[A outputs 1 | b = 1] = 1− Pr[A outputs 0 | b = 1] = 1− 1

2
· 1
26
≈ 0.98.

Plugging into Equation (2.2) then gives

Pr
[
PrivKeav

A,Π = 1
]
=

1

2
·
(
1

2
+

1

2
· 1
26

+ 1− 1

2
· 1
26

)
= 0.75 >

1

2
,

and the scheme is not perfectly indistinguishable. ♦

2.2 The One-Time Pad

In 1917, Vernam patented a perfectly secret encryption scheme now called
the one-time pad. At the time Vernam proposed the scheme, there was no
proof that it was perfectly secret; in fact, there was not yet a notion of what
perfect secrecy was. Approximately 25 years later, however, Shannon intro-
duced the definition of perfect secrecy and demonstrated that the one-time
pad achieves that level of security.

Perfectly Secret Encryption 33

CONSTRUCTION 2.8

Fix an integer ` > 0. The message spaceM, key space K, and ciphertext
space C are all equal to {0, 1}` (the set of all binary strings of length `).

• Gen: the key-generation algorithm chooses a key from K = {0, 1}`
according to the uniform distribution (i.e., each of the 2` strings
in the space is chosen as the key with probability exactly 2−`).

• Enc: given a key k ∈ {0, 1}` and a message m ∈ {0, 1}`, the
encryption algorithm outputs the ciphertext c := k ⊕m.

• Dec: given a key k ∈ {0, 1}` and a ciphertext c ∈ {0, 1}`, the
decryption algorithm outputs the message m := k ⊕ c.

The one-time pad encryption scheme.

In describing the scheme we let a⊕b denote the bitwise exclusive-or (XOR)
of two binary strings a and b (i.e., if a = a1 · · · a` and b = b1 · · · b` are `-bit
strings, then a⊕ b is the `-bit string given by a1 ⊕ b1 · · ·a` ⊕ b`). In the one-
time pad encryption scheme the key is a uniform string of the same length as
the message; the ciphertext is computed by simply XORing the key and the
message. A formal definition is given as Construction 2.8. Before discussing
security, we first verify correctness: for every key k and every message m
it holds that Deck(Enck(m)) = k ⊕ k ⊕ m = m, and so the one-time pad
constitutes a valid encryption scheme.

One can easily prove perfect secrecy of the one-time pad using Lemma 2.4
and the fact that the ciphertext is uniformly distributed regardless of what
message is encrypted. We give a proof based directly on the original definition.

THEOREM 2.9 The one-time pad encryption scheme is perfectly secret.

PROOF We first compute Pr[C = c | M = m′] for arbitrary c ∈ C and
m′ ∈ M. For the one-time pad,

Pr[C = c |M = m′] = Pr[EncK(m′) = c] = Pr[m′ ⊕K = c]

= Pr[K = m′ ⊕ c]

= 2−`,

where the final equality holds because the key K is a uniform `-bit string. Fix
any distribution overM. For any c ∈ C, we have

Pr[C = c] =
∑

m′∈M
Pr[C = c |M = m′] · Pr[M = m′]

= 2−` ·
∑

m′∈M
Pr[M = m′]

= 2−`,

34 Introduction to Modern Cryptography

where the sum is over m′ ∈M with Pr[M = m′] 6= 0. Bayes’ Theorem gives:

Pr[M = m | C = c] =
Pr[C = c |M = m] · Pr[M = m]

Pr[C = c]

=
2−` · Pr[M = m]

2−`

= Pr[M = m].

We conclude that the one-time pad is perfectly secret.

The one-time pad was used by several national-intelligence agencies in the
mid-20th century to encrypt sensitive traffic. Perhaps most famously, the “red
phone” linking the White House and the Kremlin during the Cold War was
protected using one-time pad encryption, where the governments of the US
and USSR would exchange extremely long keys using trusted couriers carrying
briefcases of paper on which random characters were written.

Notwithstanding the above, one-time pad encryption is rarely used any
more due to a number of drawbacks it has. Most prominent is that the key is
as long as the message.2 This limits the usefulness of the scheme for sending
very long messages (as it may be difficult to securely share and store a very
long key), and is problematic when the parties cannot predict in advance (an
upper bound on) how long the message will be.

Moreover, the one-time pad—as the name indicates—is only secure if used
once (with the same key). Although we did not yet define a notion of secrecy
when multiple messages are encrypted, it is easy to see that encrypting more
than one message with the same key leaks a lot of information. In particular,
say two messages m,m′ are encrypted using the same key k. An adversary
who obtains c = m⊕ k and c′ = m′ ⊕ k can compute

c⊕ c′ = (m⊕ k)⊕ (m′ ⊕ k) = m⊕m′

and thus learn the exclusive-or of the two messages or, equivalently, exactly
where the two messages differ. While this may not seem very significant, it is
enough to rule out any claims of perfect secrecy for encrypting two messages
using the same key. Moreover, if the messages correspond to natural-language
text, then given the exclusive-or of two sufficiently long messages it is possible
to perform frequency analysis (as in the previous chapter, though more com-
plex) and recover the messages themselves. An interesting historical example
of this is given by the VENONA project, as part of which the US and UK
were able to decrypt ciphertexts sent by the Soviet Union that were mistak-
enly encrypted with repeated portions of a one-time pad over several decades.

2This does not make the one-time pad useless, since it may be easier for two parties to
share a key at some point in time before the message to be communicated is known.

Perfectly Secret Encryption 35

2.3 Limitations of Perfect Secrecy

We ended the previous section by noting some drawbacks of the one-time
pad encryption scheme. Here, we show that these drawbacks are not specific
to that scheme, but are instead inherent limitations of perfect secrecy. Specif-
ically, we prove that any perfectly secret encryption scheme must have a key
space that is at least as large as the message space. If all keys are the same
length, and the message space consists of all strings of some fixed length, this
implies that the key is at least as long as the message. In particular, the key
length of the one-time pad is optimal. (The other limitation—namely, that
the key can be used only once—is also inherent if perfect secrecy is required;
see Exercise 2.13.)

THEOREM 2.10 If (Gen,Enc,Dec) is a perfectly secret encryption scheme
with message spaceM and key space K, then |K| ≥ |M|.

PROOF We show that if |K| < |M| then the scheme cannot be perfectly
secret. Assume |K| < |M|. Consider the uniform distribution overM and let
c ∈ C be a ciphertext that occurs with non-zero probability. LetM(c) be the
set of all possible messages that are possible decryptions of c; that is

M(c)
def
= {m | m = Deck(c) for some k ∈ K}.

Clearly |M(c)| ≤ |K|. (Recall that we may assume Dec is deterministic.) If
|K| < |M|, there is some m′ ∈ M such that m′ 6∈ M(c). But then

Pr[M = m′ | C = c] = 0 6= Pr[M = m′],

and so the scheme is not perfectly secret.

Perfect secrecy with shorter keys? The above theorem shows an inherent
limitation of schemes that achieve perfect secrecy. Even so, individuals oc-
casionally claim they have developed a radically new encryption scheme that
is “unbreakable” and achieves the security of the one-time pad without using
keys as long as what is being encrypted. The above proof demonstrates that
such claims cannot be true; anyone making such claims either knows very
little about cryptography or is blatantly lying.

36 Introduction to Modern Cryptography

2.4 *Shannon’s Theorem

In his work on perfect secrecy, Shannon also provided a characterization of
perfectly secret encryption schemes. This characterization says that, under
certain conditions, the key-generation algorithm Gen must choose the key
uniformly from the set of all possible keys (as in the one-time pad); moreover,
for every message m and ciphertext c there is a unique key mapping m to c
(again, as in the one-time pad). Beyond being interesting in its own right,
this theorem is a useful tool for proving (or disproving) perfect secrecy of
suggested schemes. We discuss this further after the proof.

The theorem as stated here assumes |M| = |K| = |C|, meaning that the sets
of plaintexts, keys, and ciphertexts all have the same size. We have already
seen that for perfect secrecy we must have |K| ≥ |M|. It is easy to see that
correct decryption requires |C| ≥ |M|. Therefore, in some sense, encryption
schemes with |M| = |K| = |C| are “optimal.”

THEOREM 2.11 (Shannon’s theorem) Let (Gen,Enc,Dec) be an en-
cryption scheme with message space M, for which |M| = |K| = |C|. The
scheme is perfectly secret if and only if:

1. Every key k ∈ K is chosen with (equal) probability 1/|K| by algorithm Gen.

2. For every m ∈M and every c ∈ C, there exists a unique key k ∈ K such
that Enck(m) outputs c.

PROOF The intuition behind the proof is as follows. To see that the
stated conditions imply perfect secrecy, note that condition 2 means that
any ciphertext c could be the result of encrypting any possible plaintext m,
because there is some key k mapping m to c. Since there is a unique such key,
and each key is chosen with equal probability, perfect secrecy follows as for
the one-time pad. For the other direction, perfect secrecy immediately implies
that for every m and c there is at least one key mapping m to c. The fact that
|M| = |K| = |C| means, moreover, that for every m and c there is exactly one
such key. Given this, each key must be chosen with equal probability or else
perfect secrecy would fail to hold. A formal proof follows.

We assume for simplicity that Enc is deterministic. (One can show that
this is without loss of generality here.) We first prove that if the encryption
scheme satisfies conditions 1 and 2, then it is perfectly secret. The proof is
essentially the same as the proof of perfect secrecy for the one-time pad, so
we will be relatively brief. Fix arbitrary c ∈ C and m ∈ M. Let k be the
unique key, guaranteed by condition 2, for which Enck(m) = c. Then,

Pr[C = c |M = m] = Pr[K = k] = 1/|K| ,

Perfectly Secret Encryption 37

where the final equality holds by condition 1. So

Pr[C = c] =
∑

m∈M
Pr[EncK(m) = c] · Pr[M = m] = 1/|K|.

This holds for any distribution overM. Thus, for any distribution overM,
any m ∈M with Pr[M = m] 6= 0, and any c ∈ C, we have:

Pr[M = m | C = c] =
Pr[C = c |M = m] · Pr[M = m]

Pr[C = c]

=
Pr[EncK(m) = c] · Pr[M = m]

Pr[C = c]

=
|K|−1 · Pr[M = m]

|K|−1 = Pr[M = m],

and the scheme is perfectly secret.
For the second direction, assume the encryption scheme is perfectly secret;

we show that conditions 1 and 2 hold. Fix arbitrary c ∈ C. There must
be some message m∗ for which Pr[EncK(m∗) = c] 6= 0. Lemma 2.4 then
implies that Pr[EncK(m) = c] 6= 0 for every m ∈ M. In other words, if we
let M = {m1,m2, . . .}, then for each mi ∈ M we have a nonempty set of
keys Ki ⊂ K such that Enck(mi) = c if and only if k ∈ Ki. Moreover, when
i 6= j then Ki and Kj must be disjoint or else correctness fails to hold. Since
|K| = |M|, we see that each Ki contains only a single key ki, as required by
condition 2. Now, Lemma 2.4 shows that for any mi,mj ∈M we have

Pr[K = ki] = Pr[EncK(mi) = c] = Pr[EncK(mj) = c] = Pr[K = kj].

Since this holds for all 1 ≤ i, j ≤ |M| = |K|, and ki 6= kj for i 6= j, this means
each key is chosen with probability 1/|K|, as required by condition 1.

Shannon’s theorem is useful for deciding whether a given scheme is perfectly
secret. Condition 1 is easy to check, and condition 2 can be demonstrated
(or contradicted) without having to compute any probabilities (in contrast to
working with Definition 2.3 directly). As an example, perfect secrecy of the
one-time pad is trivial to prove using Shannon’s theorem. We stress, however,
that the theorem only applies when |M| = |K| = |C|.

References and Additional Reading

The one-time pad is popularly credited to Vernam [172], who filed a patent
on it, but recent historical research [25] shows that it was invented some

38 Introduction to Modern Cryptography

35 years earlier. Analysis of the one-time pad had to await the ground-
breaking work of Shannon [154], who introduced the notion of perfect secrecy.

In this chapter we studied perfectly secret encryption. Some other cryp-
tographic problems can also be solved with “perfect” security. A notable
example is the problem of message authentication where the aim is to prevent
an adversary from (undetectably) modifying a message sent from one party to
another. We study this problem in depth in Chapter 4, discussing “perfectly
secure” message authentication in Section 4.6.

Exercises

2.1 Prove that, by redefining the key space, we may assume that the key-
generation algorithm Gen chooses a key uniformly at random from the
key space, without changing Pr[C = c |M = m] for any m, c.

Hint: Define the key space to be the set of all possible random tapes for

the randomized algorithm Gen.

2.2 Prove that, by redefining the key space, we may assume that Enc is
deterministic without changing Pr[C = c |M = m] for any m, c.

2.3 Prove or refute: An encryption scheme with message space M is per-
fectly secret if and only if for every probability distribution overM and
every c0, c1 ∈ C we have Pr[C = c0] = Pr[C = c1].

2.4 Prove the second direction of Lemma 2.4.

2.5 Prove Lemma 2.6.

2.6 For each of the following encryption schemes, state whether the scheme
is perfectly secret. Justify your answer in each case.

(a) The message space is M = {0, . . . , 4}. Algorithm Gen chooses
a uniform key from the key space {0, . . . , 5}. Enck(m) returns
[k +m mod 5], and Deck(c) returns [c− k mod 5].

(b) The message space is M = {m ∈ {0, 1}` | the last bit of m is 0}.
Gen chooses a uniform key from {0, 1}`−1. Enck(m) returns cipher-
text m⊕ (k‖0), and Deck(c) returns c⊕ (k‖0).

2.7 When using the one-time pad with the key k = 0`, we have Enck(m) =
k ⊕m = m and the message is sent in the clear! It has therefore been
suggested to modify the one-time pad by only encrypting with k 6= 0`

(i.e., to have Gen choose k uniformly from the set of nonzero keys of
length `). Is this modified scheme still perfectly secret? Explain.

Perfectly Secret Encryption 39

2.8 Let Π denote the Vigenère cipher where the message space consists of all
3-character strings (over the English alphabet), and the key is generated
by first choosing the period t uniformly from {1, 2, 3} and then letting
the key be a uniform string of length t.

(a) Define A as follows: A outputs m0 = aab and m1 = abb. When
given a ciphertext c, it outputs 0 if the first character of c is the
same as the second character of c, and outputs 1 otherwise. Com-
pute Pr[PrivKeav

A,Π = 1].

(b) Construct and analyze an adversaryA′ for which Pr[PrivKeav
A′,Π = 1]

is greater than your answer from part (a).

2.9 In this exercise, we look at different conditions under which the shift,
mono-alphabetic substitution, and Vigenère ciphers are perfectly secret:

(a) Prove that if only a single character is encrypted, then the shift
cipher is perfectly secret.

(b) What is the largest message spaceM for which the mono-alphabetic
substitution cipher provides perfect secrecy?

(c) Prove that the Vigenère cipher using (fixed) period t is perfectly
secret when used to encrypt messages of length t.

Reconcile this with the attacks shown in the previous chapter.

2.10 Prove that a scheme satisfying Definition 2.5 must have |K| ≥ |M|
without using Lemma 2.4. Specifically, let Π be an arbitrary encryption
scheme with |K| < |M|. Show an A for which Pr

[
PrivKeav

A,Π = 1
]
> 1

2 .

Hint: It may be easier to let A be randomized.

2.11 Assume we require only that an encryption scheme (Gen,Enc,Dec) with
message space M satisfy the following: For all m ∈ M, we have
Pr[DecK(EncK(m)) = m] ≥ 2−t. (This probability is taken over choice
of the key as well as any randomness used during encryption.) Show
that perfect secrecy can be achieved with |K| < |M| when t ≥ 1. Prove
a lower bound on the size of K in terms of t.

2.12 Let ε ≥ 0 be a constant. Say an encryption scheme is ε-perfectly secret
if for every adversary A it holds that

Pr
[
PrivKeav

A,Π = 1
]
≤ 1

2
+ ε .

(Compare to Definition 2.5.) Show that ε-perfect secrecy can be achieved
with |K| < |M| when ε > 0. Prove a lower bound on the size of K in
terms of ε.

40 Introduction to Modern Cryptography

2.13 In this problem we consider definitions of perfect secrecy for the en-
cryption of two messages (using the same key). Here we consider dis-
tributions over pairs of messages from the message space M; we let
M1,M2 be random variables denoting the first and second message, re-
spectively. (We stress that these random variables are not assumed to
be independent.) We generate a (single) key k, sample a pair of mes-
sages (m1,m2) according to the given distribution, and then compute
ciphertexts c1 ← Enck(m1) and c2 ← Enck(m2); this induces a distri-
bution over pairs of ciphertexts and we let C1, C2 be the corresponding
random variables.

(a) Say encryption scheme (Gen,Enc,Dec) is perfectly secret for two
messages if for all distributions over M×M, all m1,m2 ∈ M,
and all ciphertexts c1, c2 ∈ C with Pr[C1 = c1 ∧C2 = c2] > 0:

Pr [M1 = m1 ∧M2 = m2 | C1 = c1 ∧ C2 = c2]

= Pr[M1 = m1 ∧M2 = m2].

Prove that no encryption scheme can satisfy this definition.
Hint: Take c1 = c2.

(b) Say encryption scheme (Gen,Enc,Dec) is perfectly secret for two
distinct messages if for all distributions over M×M where the
first and second messages are guaranteed to be different (i.e., dis-
tributions over pairs of distinct messages), all m1,m2 ∈ M, and
all c1, c2 ∈ C with Pr[C1 = c1 ∧ C2 = c2] > 0:

Pr[M1 = m1 ∧M2 = m2 | C1 = c1 ∧ C2 = c2]

= Pr[M1 = m1 ∧M2 = m2].

Show an encryption scheme that provably satisfies this definition.
Hint: The encryption scheme you propose need not be efficient,

although an efficient solution is possible.

Part II

Private-Key (Symmetric)
Cryptography

Chapter 3

Private-Key Encryption

In the previous chapter we saw some fundamental limitations of perfect se-
crecy. In this chapter we begin our study of modern cryptography by intro-
ducing the weaker (but sufficient) notion of computational secrecy. We will
then show how this definition can be used to bypass the impossibility results
shown previously and, in particular, how a short key (say, 128 bits long) can
be used to encrypt many long messages (say, gigabytes in total).

Along the way we will study the fundamental notion of pseudorandomness,
which captures the idea that something can “look” completely random even
though it is not. This powerful concept underlies much of modern cryptogra-
phy, and has applications and implications beyond the field as well.

3.1 Computational Security

In Chapter 2 we introduced the notion of perfect secrecy. While perfect
secrecy is a worthwhile goal, it is also unnecessarily strong. Perfect secrecy
requires that absolutely no information about an encrypted message is leaked,
even to an eavesdropper with unlimited computational power. For all practical
purposes, however, an encryption scheme would still be considered secure if
it leaked only a tiny amount of information to eavesdroppers with bounded
computational power. For example, a scheme that leaks information with
probability at most 2−60 to eavesdroppers investing up to 200 years of com-
putational effort on the fastest available supercomputer is adequate for any
real-world application. Security definitions that take into account computa-
tional limits on the attacker, and allow for a small probability of failure, are
called computational, to distinguish them from notions (like perfect secrecy)
that are information-theoretic in nature. Computational security is now the
de facto way in which security is defined for all cryptographic purposes.

We stress that although we give up on obtaining perfect security, this does
not mean we do away with the rigorous mathematical approach. Definitions
and proofs are still essential, and the only difference is that we now consider
weaker (but still meaningful) definitions of security.

Computational security incorporates two relaxations relative to information-

43

44 Introduction to Modern Cryptography

theoretic notions of security (in the case of encryption, both these relaxations
are necessary in order to go beyond the limitations of perfect secrecy discussed
in the previous chapter):

1. Security is only guaranteed against efficient adversaries that run for some
feasible amount of time. This means that given enough time (or suffi-
cient computational resources) an attacker may be able to violate secu-
rity. If we can make the resources required to break the scheme larger
than those available to any realistic attacker, then for all practical pur-
poses the scheme is unbreakable.

2. Adversaries can potentially succeed (i.e., security can potentially fail)
with some very small probability. If we can make this probability suffi-
ciently small, we need not worry about it.

To obtain a meaningful theory, we need to precisely define the above relax-
ations. There are two general approaches for doing so: the concrete approach
and the asymptotic approach. These are described next.

3.1.1 The Concrete Approach

The concrete approach to computational security quantifies the security of a
cryptographic scheme by explicitly bounding the maximum success probabil-
ity of any (randomized) adversary running for some specified amount of time
or, more precisely, investing some specific amount of computational effort.
Thus, a concrete definition of security takes roughly the following form:

A scheme is (t, ε)-secure if any adversary running for time at
most t succeeds in breaking the scheme with probability at most ε.

(Of course, the above serves only as a general template, and for the above
statement to make sense we need to define exactly what it means to “break”
the scheme in question.) As an example, one might have a scheme with the
guarantee that no adversary running for at most 200 years using the fastest
available supercomputer can succeed in breaking the scheme with probability
better than 2−60. Or, it may be more convenient to measure running time in
terms of CPU cycles, and to construct a scheme such that no adversary using
at most 280 cycles can break the scheme with probability better than 2−60.

It is instructive to get a feel for the large values of t and the small values
of ε that are typical of modern cryptographic schemes.

Example 3.1
Modern private-key encryption schemes are generally assumed to give almost
optimal security in the following sense: when the key has length n—and so
the key space has size 2n—an adversary running for time t (measured in, say,
computer cycles) succeeds in breaking the scheme with probability at most

Private-Key Encryption 45

ct/2n for some fixed constant c. (This simply corresponds to a brute-force
search of the key space, and assumes no preprocessing has been done.)

Assuming c = 1 for simplicity, a key of length n = 60 provides adequate
security against an adversary using a desktop computer. Indeed, on a 4 GHz
processor (that executes 4 × 109 cycles per second) 260 CPU cycles require
260/(4×109) seconds, or about 9 years. However, the fastest supercomputer at
the time of this writing can execute roughly 2×1016 floating point operations
per second, and 260 such operations require only about 1 minute on such a
machine. Taking n = 80 would be a more prudent choice; even the computer
just mentioned would take about 2 years to carry out 280 operations.

(The above numbers are for illustrative purposes only; in practice c > 1, and
several other factors—such as the time required for memory access and the
possibility of parallel computation on a network of computers—significantly
affect the performance of brute-force attacks.)

Today, however, a recommended key length might be n = 128. The differ-
ence between 280 and 2128 is a multiplicative factor of 248. To get a feeling
for how big this is, note that according to physicists’ estimates the number of
seconds since the Big Bang is on the order of 258.

If the probability that an attacker can successfully recover an encrypted
message in one year is at most 2−60, then it is much more likely that the
sender and receiver will both be hit by lightning in that same period of time.
An event that occurs once every hundred years can be roughly estimated to
occur with probability 2−30 in any given second. Something that occurs with
probability 2−60 in any given second is 230 times less likely, and might be
expected to occur roughly once every 100 billion years. ♦

The concrete approach is important in practice, since concrete guarantees
are what users of a cryptographic scheme are ultimately interested in. How-
ever, precise concrete guarantees are difficult to provide. Furthermore, one
must be careful in interpreting concrete security claims. For example, a claim
that no adversary running for 5 years can break a given scheme with proba-
bility better than ε begs the questions: what type of computing power (e.g.,
desktop PC, supercomputer, network of hundreds of computers) does this
assume? Does this take into account future advances in computing power
(which, by Moore’s Law, roughly doubles every 18 months)? Does the es-
timate assume the use of “off-the-shelf” algorithms, or dedicated software
implementations optimized for the attack? Furthermore, such a guarantee
says little about the success probability of an adversary running for 2 years
(other than the fact that it can be at most ε) and says nothing about the
success probability of an adversary running for 10 years.

3.1.2 The Asymptotic Approach

As partly noted above, there are some technical and theoretical difficulties
in using the concrete-security approach. These issues must be dealt with in

46 Introduction to Modern Cryptography

practice, but when concrete security is not an immediate concern it is conve-
nient instead to use an asymptotic approach to security; this is the approach
taken in this book. This approach, rooted in complexity theory, introduces
an integer-valued security parameter (denoted by n) that parameterizes both
cryptographic schemes as well as all involved parties (namely, the honest par-
ties as well as the attacker). When honest parties initialize a scheme (i.e.,
when they generate keys), they choose some value n for the security parame-
ter; for the purposes of this discussion, one can think of the security parameter
as corresponding to the length of the key. The security parameter is assumed
to be known to any adversary attacking the scheme, and we now view the
running time of the adversary, as well as its success probability, as functions
of the security parameter rather than as concrete numbers. Then:

1. We equate “efficient adversaries” with randomized (i.e., probabilistic)
algorithms running in time polynomial in n. This means there is some
polynomial p such that the adversary runs for time at most p(n) when
the security parameter is n. We also require—for real-world efficiency—
that honest parties run in polynomial time, although we stress that the
adversary may be much more powerful (and run much longer than) the
honest parties.

2. We equate the notion of “small probabilities of success” with success
probabilities smaller than any inverse polynomial in n (see Definition 3.4).
Such probabilities are called negligible.

Let ppt stand for “probabilistic polynomial-time.” A definition of asymptotic
security then takes the following general form:

A scheme is secure if any ppt adversary succeeds in breaking the
scheme with at most negligible probability.

This notion of security is asymptotic since security depends on the behavior
of the scheme for sufficiently large values of n. The following example makes
this clear.

Example 3.2
Say we have a scheme that is asymptotically secure. Then it may be the
case that an adversary running for n3 minutes can succeed in “breaking the
scheme” with probability 240 ·2−n (which is a negligible function of n). When
n ≤ 40 this means that an adversary running for 403 minutes (about 6 weeks)
can break the scheme with probability 1, so such values of n are not very
useful. Even for n = 50 an adversary running for 503 minutes (about 3
months) can break the scheme with probability roughly 1/1000, which may
not be acceptable. On the other hand, when n = 500 an adversary running
for 200 years breaks the scheme only with probability roughly 2−500. ♦

Private-Key Encryption 47

As indicated by the previous example, we can view the security parameter as
a mechanism that allows the honest parties to “tune” the security of a scheme
to some desired level. (Increasing the security parameter also increases the
time required to run the scheme, as well as the length of the key, so the honest
parties will want to set the security parameter as small as possible subject
to defending against the class of attacks they are concerned about.) Viewing
the security parameter as the key length, this corresponds roughly to the fact
that the time required for an exhaustive-search attack grows exponentially
in the length of the key. The ability to “increase security” by increasing
the security parameter has important practical ramifications, since it enables
honest parties to defend against increases in computing power. The following
example gives a sense of how this might play out in practice.

Example 3.3
Let us see the effect that the availability of faster computers might have on
security in practice. Say we have a cryptographic scheme in which the honest
parties run for 106 ·n2 cycles, and for which an adversary running for 108 · n4

cycles can succeed in “breaking” the scheme with probability at most 2−n/2.
(The numbers are intended to make calculations easier, and are not meant to
correspond to any existing cryptographic scheme.)

Say all parties are using 2 GHz computers and the honest parties set n = 80.
Then the honest parties run for 106 · 6400 cycles, or 3.2 seconds, and an
adversary running for 108 · (80)4 cycles, or roughly 3 weeks, can break the
scheme with probability only 2−40.

Say 8 GHz computers become available, and all parties upgrade. Honest
parties can increase n to 160 (which requires generating a fresh key) and
maintain a running time of 3.2 seconds (i.e., 106 · 1602 cycles at 8 · 109 cy-
cles/second). In contrast, the adversary now has to run for over 8 million
seconds, or more than 13 weeks, to achieve a success probability of 2−80. The
effect of a faster computer has been to make the adversary’s job harder. ♦

Even when using the asymptotic approach it is important to remember that,
ultimately, when a cryptosystem is deployed in practice a concrete security
guarantee will be needed. (After all, one must decide on some value of n.)
As the above examples indicate, however, it is generally the case that an
asymptotic security claim can be translated into a concrete security bound
for any desired value of n.

The Asymptotic Approach in Detail

We now discuss more formally the notions of “polynomial-time algorithms”
and “negligible success probabilities.”

Efficient algorithms. We have defined an algorithm to be efficient if it runs
in polynomial time. An algorithm A runs in polynomial time if there exists a

48 Introduction to Modern Cryptography

polynomial p such that, for every input x ∈ {0, 1}∗, the computation of A(x)
terminates within at most p(|x|) steps. (Here, |x| denotes the length of the
string x.) As mentioned earlier, we are only interested in adversaries whose
running time is polynomial in the security parameter n. Since we measure the
running time of an algorithm in terms of the length of its input, we sometimes
provide algorithms with the security parameter written in unary (i.e., as 1n,
or a string of n ones) as input. Parties (or, more precisely, the algorithms they
run) may take other inputs besides the security parameter—for example, a
message to be encrypted—and we allow their running time to be polynomial
in the (total) length of their inputs.

By default, we allow all algorithms to be probabilistic (or randomized).
Any such algorithm may “toss a coin” at each step of its execution; this is a
metaphorical way of saying that the algorithm can access an unbiased random
bit at each step. Equivalently, we can view a randomized algorithm as one
that, in addition to its input, is given a uniformly distributed random tape of
sufficient length1 whose bits it can use, as needed, throughout its execution.

We consider randomized algorithms by default for two reasons. First, ran-
domness is essential to cryptography (e.g., in order to choose random keys
and so on) and so honest parties must be probabilistic; given this, it is nat-
ural to allow adversaries to be probabilistic as well. Second, randomization
is practical and—as far as we know—gives attackers additional power. Since
our goal is to model all realistic attacks, we prefer a more liberal definition of
efficient computation.

Negligible success probability. A negligible function is one that is asymp-
totically smaller than any inverse polynomial function. Formally:

DEFINITION 3.4 A function f from the natural numbers to the non-
negative real numbers is negligible if for every positive polynomial p there is
an N such that for all integers n > N it holds that f(n) < 1

p(n) .

For shorthand, the above is also stated as follows: for every polynomial p
and all sufficiently large values of n it holds that f(n) < 1

p(n) . An equivalent

formulation of the above is to require that for all constants c there exists an
N such that for all n > N it holds that f(n) < n−c. We typically denote an
arbitrary negligible function by negl.

Example 3.5
The functions 2−n, 2−

√
n, and n− logn are all negligible. However, they ap-

proach zero at very different rates. For example, we can look at the minimum
value of n for which each function is smaller than 1/n5:

1If the algorithm in question runs for p(n) steps on inputs of length n, then a random tape
of length p(n) is sufficient since the attacker can read at most one random bit per time step.

Private-Key Encryption 49

1. Solving 2−n < n−5 we get n > 5 logn. The smallest integer value of n
for which this holds is n = 23.

2. Solving 2−
√
n < n−5 we get n > 25 log2 n. The smallest integer value of

n for which this holds is n ≈ 3500.

3. Solving n− logn < n−5 we get log n > 5. The smallest integer value of n
for which this holds is n = 33.

From the above you may have the impression that n− log n approaches zero
more quickly than 2−

√
n. However, this is incorrect; for all n > 65536 it holds

that 2−
√
n < n− logn. Nevertheless, this does show that for values of n in

the hundreds or thousands, an adversarial success probability of n− logn is
preferable to an adversarial success probability of 2−

√
n. ♦

A technical advantage of working with negligible success probabilities is
that they obey certain closure properties. The following is an easy exercise.

PROPOSITION 3.6 Let negl1 and negl2 be negligible functions. Then,

1. The function negl3 defined by negl3(n) = negl1(n)+negl2(n) is negligible.

2. For any positive polynomial p, the function negl4 defined by negl4(n) =
p(n) · negl1(n) is negligible.

The second part of the above proposition implies that if a certain event oc-
curs with only negligible probability in a certain experiment, then the event
occurs with negligible probability even if the experiment is repeated polyno-
mially many times. (This relies on the union bound; see Proposition A.7.)
For example, the probability that n fair coin flips all come up “heads” is neg-
ligible. This means that even if we repeat the experiment of flipping n coins
polynomially many times, the probability that any of those experiments result
in n heads is still negligible.

A corollary of the second part of the above proposition is that if a function

g is not negligible, then neither is the function f(n)
def
= g(n)/p(n) for any

positive polynomial p.

Asymptotic Security: A Summary

Any security definition consists of two parts: a definition of what is consid-
ered a “break” of the scheme, and a specification of the power of the adversary.
The power of the adversary can relate to many issues (e.g., in the case of en-
cryption, whether we assume a ciphertext-only attack or a chosen-plaintext
attack). However, when it comes to the computational power of the adversary,
we will from now on model the adversary as efficient and thus only consider
adversarial strategies that can be implemented in probabilistic polynomial

50 Introduction to Modern Cryptography

time. Definitions will also always be formulated so that a break that occurs
with negligible probability is not considered significant. Thus, the general
framework of any security definition will be as follows:

A scheme is secure if for every probabilistic polynomial-time adver-
sary A carrying out an attack of some formally specified type, the
probability that A succeeds in the attack (where success is also
formally specified) is negligible.

Such a definition is asymptotic because it is possible that for small values of n
an adversary can succeed with high probability. In order to see this in more
detail, we expand the term “negligible” in the above statement:

A scheme is secure if for every ppt adversary A carrying out an
attack of some formally specified type, and for every positive poly-
nomial p, there exists an integer N such that when n > N the
probability that A succeeds in the attack is less than 1

p(n) .

Note that nothing is guaranteed for values n ≤ N .

On the Choices Made in Defining Asymptotic Security

In defining the general notion of asymptotic security, we have made two
choices: we have identified efficient adversarial strategies with the class of
probabilistic, polynomial-time algorithms, and have equated small chances
of success with negligible probabilities. Both of these choices are—to some
extent—arbitrary, and one could build a perfectly reasonable theory by defin-
ing, say, efficient strategies as those running in quadratic time, or small suc-
cess probabilities as those bounded by 2−n. Nevertheless, we briefly justify
the choices we have made (which are the standard ones).

Those familiar with complexity theory or algorithms will recognize that the
idea of equating efficient computation with (probabilistic) polynomial-time
algorithms is not unique to cryptography. One advantage of using (proba-
bilistic) polynomial time as our measure of efficiency is that this frees us from
having to precisely specify our model of computation, since the extended
Church–Turing thesis states that all “reasonable” models of computation are
polynomially equivalent. Thus, we need not specify whether we use Turing
machines, boolean circuits, or random-access machines; we can present algo-
rithms in high-level pseudocode and be confident that if our analysis shows
that these algorithms run in polynomial time, then any reasonable implemen-
tation will also.

Another advantage of (probabilistic) polynomial-time algorithms is that
they satisfy desirable closure properties: in particular, an algorithm that
makes polynomially many calls to a polynomial-time subroutine (and does
only polynomial computation in addition) will itself run in polynomial time.

Private-Key Encryption 51

The most important feature of negligible probabilities is the closure prop-
erty we have already seen in Proposition 3.6(2): any polynomial times a negli-
gible function is still negligible. This means, in particular, that if an algorithm
makes polynomially many calls to some subroutine that “fails” with negligible
probability each time it is called, then the probability that any of the calls to
that subroutine fail is still negligible.

Necessity of the Relaxations

Computational secrecy introduces two relaxations of perfect secrecy: first,
security is guaranteed only against efficient adversaries; second, a small prob-
ability of success is allowed. Both these relaxations are essential for achieving
practical encryption schemes, and in particular for bypassing the negative re-
sults for perfectly secret encryption. We informally discuss why this is the
case. Assume we have an encryption scheme where the size of the key space K
is much smaller than the size of the message spaceM. (As shown in the previ-
ous chapter, this means the scheme cannot be perfectly secret.) Two attacks
apply regardless of how the encryption scheme is constructed:

• Given a ciphertext c, an adversary can decrypt c using all keys k ∈ K.
This gives a list of all the messages to which c can possibly correspond.
Since this list cannot contain all ofM (because |K| < |M|), this attack
leaks some information about the message that was encrypted.

Moreover, say the adversary carries out a known-plaintext attack and
learns that ciphertexts c1, . . . , c` correspond to the messagesm1, . . . ,m`,
respectively. The adversary can again try decrypting each of these ci-
phertexts with all possible keys until it finds a key k for which Deck(ci) =
mi for all i. Later, given a ciphertext c that is the encryption of an un-
known message m, it is almost surely the case that Deck(c) = m.

Exhaustive-search attacks like the above allow an adversary to succeed
with probability essentially 1 in time linear in |K|.

• Consider again the case where the adversary learns that ciphertexts
c1, . . . , c` correspond to messagesm1, . . . ,m`. The adversary can guess a
uniform key k ∈ K and check to see whether Deck(ci) = mi for all i. If so,
then, as above, the attacker can use k to decrypt anything subsequently
encrypted by the honest parties.

Here the adversary runs in essentially constant time and succeeds with
nonzero (though very small) probability 1/|K|.

It follows that if we wish to encrypt many messages using a single short key,
security can only be achieved if we limit the running time of the adversary (so
the adversary does not have sufficient time to carry out a brute-force search)
and are willing to allow a very small probability of success (so the second
“attack” is ruled out).

52 Introduction to Modern Cryptography

3.2 Defining Computationally Secure Encryption

Given the background of the previous section, we are ready to present a
definition of computational security for private-key encryption. First, we re-
define the syntax of private-key encryption; this will be essentially the same
as the syntax introduced in Chapter 2 except that we now explicitly take into
account the security parameter n. We also allow the decryption algorithm
to output an error message in case it is presented with an invalid ciphertext.
Finally, by default, we let the message space be the set {0, 1}∗ of all (finite-
length) binary strings.

DEFINITION 3.7 A private-key encryption scheme is a tuple of proba-
bilistic polynomial-time algorithms (Gen,Enc,Dec) such that:

1. The key-generation algorithm Gen takes as input 1n (i.e., the security
parameter written in unary) and outputs a key k; we write k ← Gen(1n)
(emphasizing that Gen is a randomized algorithm). We assume without
loss of generality that any key k output by Gen(1n) satisfies |k| ≥ n.

2. The encryption algorithm Enc takes as input a key k and a plaintext
message m ∈ {0, 1}∗, and outputs a ciphertext c. Since Enc may be
randomized, we write this as c← Enck(m).

3. The decryption algorithm Dec takes as input a key k and a ciphertext c,
and outputs a message m or an error. We assume that Dec is deter-
ministic, and so write m := Deck(c) (assuming here that Dec does not
return an error). We denote a generic error by the symbol ⊥.

It is required that for every n, every key k output by Gen(1n), and every
m ∈ {0, 1}∗, it holds that Deck(Enck(m)) = m.

If (Gen,Enc,Dec) is such that for k output by Gen(1n), algorithm Enck is
only defined for messages m ∈ {0, 1}`(n), then we say that (Gen,Enc,Dec) is
a fixed-length private-key encryption scheme for messages of length `(n).

Almost always, Gen(1n) simply outputs a uniform n-bit string as the key.
When this is the case, we will omit Gen and simply define a private-key en-
cryption scheme by a pair of algorithms (Enc,Dec).

The above definition considers stateless schemes, in which each invocation
of Enc (and Dec) is independent of all prior invocations. Later in the chapter,
we will occasionally discuss stateful schemes in which the sender (and possibly
the receiver) is required to maintain state across invocations. Unless explicitly
noted otherwise, all our results assume stateless encryption/decryption.

Private-Key Encryption 53

3.2.1 The Basic Definition of Security

We begin by presenting the most basic notion of security for private-key
encryption: security against a ciphertext-only attack where the adversary
observes only a single ciphertext or, equivalently, security when a given key
is used to encrypt just a single message. We consider stronger definitions of
security later in the chapter.

Motivating the definition. As we have already discussed, any definition
of security consists of two distinct components: a threat model (i.e., a speci-
fication of the assumed power of the adversary) and a security goal (usually
specified by describing what constitutes a “break” of the scheme). We begin
our definitional treatment by considering the simplest threat model, where
we have an eavesdropping adversary who observes the encryption of a single
message. This is exactly the threat model that was considered in the previous
chapter with the exception that, as explained in the previous section, we are
now interested only in adversaries that are computationally bounded and so
limited to running in polynomial time.

Although we have made two assumptions about the adversary’s capabili-
ties (namely, that it only eavesdrops, and that it runs in polynomial time), we
make no assumptions whatsoever about the adversary’s strategy in trying to
decipher the ciphertext it observes. This is crucial for obtaining meaningful
notions of security; the definition ensures protection against any computa-
tionally bounded adversary, regardless of the algorithm it uses.

Correctly defining the security goal for encryption is not trivial, but we
have already discussed this issue at length in Section 1.4.1 and in the previ-
ous chapter. We therefore just recall that the idea behind the definition is
that the adversary should be unable to learn any partial information about
the plaintext from the ciphertext. The definition of semantic security (cf.
Section 3.2.2) exactly formalizes this notion, and was the first definition of
computationally secure encryption to be proposed. Semantic security is com-
plex and difficult to work with. Fortunately, there is an equivalent definition
called indistinguishability that is much simpler.

The definition of indistinguishability is patterned on the alternative defini-
tion of perfect secrecy given as Definition 2.5. (This serves as further moti-
vation that the definition of indistinguishability is a good one.) Recall that
Definition 2.5 considers an experiment PrivKeav

A,Π in which an adversary A out-
puts two messages m0 and m1, and is then given an encryption of one of those
messages using a uniform key. The definition states that a scheme Π is secure
if no adversary A can determine which of the messages m0,m1 was encrypted
with probability any different from 1/2, which is the probability that A is
correct if it just makes a random guess.

Here, we keep the experiment PrivKeav
A,Π almost exactly the same (except for

some technical differences discussed below), but introduce two key modifica-
tions in the definition itself:

54 Introduction to Modern Cryptography

1. We now consider only adversaries running in polynomial time, whereas
Definition 2.5 considered even adversaries with unbounded running time.

2. We now concede that the adversary might determine the encrypted mes-
sage with probability negligibly better than 1/2.

As discussed extensively in the previous section, the above relaxations consti-
tute the core elements of computational security.

As for the other differences, the most prominent is that we now parame-
terize the experiment by a security parameter n. We then measure both the
running time of the adversary A as well as its success probability as functions
of n. We write PrivKeav

A,Π(n) to denote the experiment being run with security
parameter n, and write

Pr[PrivKeav
A,Π(n) = 1] (3.1)

to denote the probability that the output of experiment PrivKeav
A,Π(n) is 1.

Note that with A,Π fixed, Equation (3.1) is a function of n.
A second difference in experiment PrivKeav

A,Π is that we now explicitly re-
quire the adversary to output two messages m0,m1 of equal length. (In Def-
inition 2.5 this requirement is implicit if the message spaceM only contains
messages of some fixed length, as is the case for the one-time pad encryption
scheme.) This means that, by default, we do not require a secure encryption
scheme to hide the length of the plaintext. We revisit this point at the end of
this section; see also Exercises 3.2 and 3.3.

Indistinguishability in the presence of an eavesdropper. We now give
the formal definition, beginning with the experiment outlined above. The ex-
periment is defined for any private-key encryption scheme Π = (Gen,Enc,Dec),
any adversary A, and any value n for the security parameter:

The adversarial indistinguishability experiment PrivKeav
A,Π(n):

1. The adversary A is given input 1n, and outputs a pair of
messages m0,m1 with |m0| = |m1|.

2. A key k is generated by running Gen(1n), and a uniform bit
b ∈ {0, 1} is chosen. Ciphertext c ← Enck(mb) is computed
and given to A. We refer to c as the challenge ciphertext.

3. A outputs a bit b′.

4. The output of the experiment is defined to be 1 if b′ = b, and
0 otherwise. If PrivKeav

A,Π(n) = 1, we say that A succeeds.

There is no limitation on the lengths of m0 and m1, as long as they are the
same. (Of course, if A runs in polynomial time, then m0 and m1 have length
polynomial in n.) If Π is a fixed-length scheme for messages of length `(n),
the above experiment is modified by requiring m0,m1 ∈ {0, 1}`(n).

Private-Key Encryption 55

The fact that the adversary can only eavesdrop is implicit in the fact that
its input is limited to a (single) ciphertext, and the adversary does not have
any further interaction with the sender or the receiver. (As we will see later,
allowing additional interaction makes the adversary significantly stronger.)

The definition of indistinguishability states that an encryption scheme is se-
cure if no ppt adversary A succeeds in guessing which message was encrypted
in the above experiment with probability significantly better than random
guessing (which is correct with probability 1/2):

DEFINITION 3.8 A private-key encryption scheme Π = (Gen,Enc,Dec)
has indistinguishable encryptions in the presence of an eavesdropper, or is EAV-
secure, if for all probabilistic polynomial-time adversaries A there is a negli-
gible function negl such that, for all n,

Pr
[
PrivKeav

A,Π(n) = 1
]
≤ 1

2
+ negl(n),

where the probability is taken over the randomness used by A and the ran-
domness used in the experiment (for choosing the key and the bit b, as well as
any randomness used by Enc).

Note: unless otherwise qualified, when we write “f(n) ≤ g(n)” we mean
that inequality holds for all n.

It should be clear that Definition 3.8 is weaker than Definition 2.5, which
is equivalent to perfect secrecy. Thus, any perfectly secret encryption scheme
has indistinguishable encryptions in the presence of an eavesdropper. Our
goal, therefore, will be to show that there exist encryption schemes satisfying
the above in which the key is shorter than the message. That is, we will show
schemes that satisfy Definition 3.8 but cannot satisfy Definition 2.5.

An equivalent formulation. Definition 3.8 requires that no ppt adver-
sary can determine which of two messages was encrypted, with probability
significantly better than 1/2. An equivalent formulation is that every ppt ad-
versary behaves the same whether it sees an encryption of m0 or of m1. Since
A outputs a single bit, “behaving the same” means it outputs 1 with almost
the same probability in each case. To formalize this, define PrivKeav

A,Π(n, b) as
above except that the fixed bit b is used (rather than being chosen at random).
Let outA(PrivK

eav
A,Π(n, b)) denote the output bit b

′ of A in the experiment. The
following essentially states that no A can determine whether it is running in
experiment PrivKeav

A,Π(n, 0) or experiment PrivKeav
A,Π(n, 1).

DEFINITION 3.9 A private-key encryption scheme Π = (Gen,Enc,Dec)
has indistinguishable encryptions in the presence of an eavesdropper if for all
ppt adversaries A there is a negligible function negl such that∣∣∣Pr[outA(PrivKeav

A,Π(n, 0)) = 1]− Pr[outA(PrivK
eav
A,Π(n, 1)) = 1]

∣∣∣ ≤ negl(n).

The fact that this is equivalent to Definition 3.8 is left as an exercise.

56 Introduction to Modern Cryptography

Encryption and Plaintext Length

The default notion of secure encryption does not require the encryption
scheme to hide the plaintext length and, in fact, all commonly used encryp-
tion schemes reveal the plaintext length (or a close approximation thereof).
The main reason for this is that it is impossible to support arbitrary-length
messages while hiding all information about the plaintext length (cf. Exer-
cise 3.2). In many cases this is inconsequential since the plaintext length is
already public or is not sensitive. This is not always the case, however, and
sometimes leaking the plaintext length is problematic. As examples:

• Simple numeric/text data: Say the encryption scheme being used reveals
the plaintext length exactly. Then encrypted salary information would
reveal whether someone makes a 5-figure or a 6-figure salary. Similarly,
encryption of “yes”/“no” responses would leak the answer exactly.

• Auto-suggestions: Websites often include an “auto-complete” or “auto-
suggestion” functionality by which the webserver suggests a list of poten-
tial words or phrases based on partial information the user has already
typed. The size of this list can reveal information about the letters the
user has typed so far. (For example, the number of auto-completions
returned for “th” is far greater than the number for “zo.”)

• Database searches: Consider a user querying a database for all records
matching some search term. The number of records returned can reveal
a lot of information about what the user was searching for. This can be
particularly damaging if the user is searching for medical information
and the query reveals information about a disease the user has.

• Compressed data: If the plaintext is compressed before being encrypted,
then information about the plaintext might be revealed even if only
fixed-length data is ever encrypted. (Such an encryption scheme would
therefore not satisfy Definition 3.8.) For example, a short compressed
plaintext would indicate that the original (uncompressed) plaintext has
a lot of redundancy. If an adversary can control a portion of what gets
encrypted, this vulnerability can enable an adversary to learn additional
information about the plaintext; it has been shown possible to use an
attack of exactly this sort (the CRIME attack) against encrypted HTTP
traffic to reveal secret session cookies.

When using encryption one should determine whether leaking the plaintext
length is a concern and, if so, take steps to mitigate or prevent such leakage by
padding all messages to some pre-determined length before encrypting them.

3.2.2 *Semantic Security

We motivated the definition of secure encryption by saying that it should be
infeasible for an adversary to learn any partial information about the plaintext

Private-Key Encryption 57

from the ciphertext. However, the definition of indistinguishability looks very
different. As we have mentioned, Definition 3.8 is equivalent to a definition
called semantic security that formalizes the notion that partial information
cannot be learned. We build up to that definition by discussing two weaker
notions and showing that they are implied by indistinguishability.

We begin by showing that indistinguishability means that ciphertexts leak
no information about individual bits of the plaintext. Formally, say encryption
scheme (Enc,Dec) is EAV-secure (recall then when Gen is omitted, the key is
a uniform n-bit string), and m ∈ {0, 1}` is uniform. Then we show that for
any index i, it is infeasible to guess mi from Enck(m) (where, in this section,
mi denotes the ith bit of m) with probability much better than 1/2.

THEOREM 3.10 Let Π = (Enc,Dec) be a fixed-length private-key encryp-
tion scheme for messages of length ` that has indistinguishable encryptions in
the presence of an eavesdropper. Then for all ppt adversaries A and any
i ∈ {1, . . . , `}, there is a negligible function negl such that

Pr
[
A(1n,Enck(m)) = mi

]
≤ 1

2
+ negl(n),

where the probability is taken over uniform m ∈ {0, 1}` and k ∈ {0, 1}n, the
randomness of A, and the randomness of Enc.

PROOF The idea behind the proof of this theorem is that if it were possible
to guess the ith bit of m from Enck(m), then it would also be possible to
distinguish between encryptions of messages m0 and m1 whose ith bits differ.
We formalize this via a proof by reduction, in which we show how to use
any efficient adversary A to construct an efficient adversary A′ such that if A
violates the security notion of the theorem for Π, thenA′ violates the definition
of indistinguishability for Π. (See Section 3.3.2.) Since Π has indistinguishable
encryptions, it must also be secure in the sense of the theorem.

Fix an arbitrary ppt adversary A and i ∈ {1, . . . , `}. Let I0 ⊂ {0, 1}` be
the set of all strings whose ith bit is 0, and let I1 ⊂ {0, 1}` be the set of all
strings whose ith bit is 1. We have

Pr
[
A(1n,Enck(m)) = mi

]

=
1

2
· Pr
m0←I0

[A(1n,Enck(m0)) = 0] +
1

2
· Pr
m1←I1

[A(1n,Enck(m1)) = 1] .

Construct the following eavesdropping adversary A′:
Adversary A′:
1. Choose uniform m0 ∈ I0 and m1 ∈ I1. Output m0,m1.

2. Upon observing a ciphertext c, invoke A(1n, c). If A outputs
0, output b′ = 0; otherwise, output b′ = 1.

A′ runs in polynomial time since A does.

58 Introduction to Modern Cryptography

By the definition of experiment PrivKeav
A′,Π(n), we have that A′ succeeds if

and only if A outputs b upon receiving Enck(mb). So

Pr
[
PrivKeav

A′,Π(n) = 1
]

= Pr [A(1n,Enck(mb)) = b]

=
1

2
· Pr
m0←I0

[A(1n,Enck(m0)) = 0] +
1

2
· Pr
m1←I1

[A(1n,Enck(m1)) = 1]

= Pr
[
A(1n,Enck(m)) = mi

]
.

By the assumption that (Enc,Dec) has indistinguishable encryptions in the
presence of an eavesdropper, there is a negligible function negl such that
Pr
[
PrivKeav

A′,Π(n) = 1
]
≤ 1

2 + negl(n). We conclude that

Pr
[
A(1n,Enck(m)) = mi

]
≤ 1

2
+ negl(n),

completing the proof.

We next claim, roughly, that indistinguishability means that no ppt adver-
sary can learn any function of the plaintext given the ciphertext, regardless
of the distribution of the message being sent. This is intended to capture the
idea that no information about a plaintext is leaked by the resulting cipher-
text. This requirement is, however, non-trivial to define formally. To see why,
note that even for the case considered above, it is easy to compute the ith
bit of m if m is chosen, say, uniformly from the set of all strings whose ith
bit is 0 (rather than uniformly from {0, 1}`). Thus, what we actually want to
say is that if there exists any adversary who correctly computes f(m) with
some probability when given Enck(m), then there exists an adversary that
can correctly compute f(m) with the same probability without being given
the ciphertext at all (and only knowing the distribution of m). In what follows
we focus on the case when m is chosen uniformly from some set S ⊆ {0, 1}`.

THEOREM 3.11 Let (Enc,Dec) be a fixed-length private-key encryption
scheme for messages of length ` that has indistinguishable encryptions in the
presence of an eavesdropper. Then for any ppt algorithm A there is a ppt al-
gorithm A′ such that for any S ⊆ {0, 1}` and any function f : {0, 1}` → {0, 1},
there is a negligible function negl such that:

∣∣∣Pr [A(1n,Enck(m)) = f(m)]− Pr [A′(1n) = f(m)]
∣∣∣ ≤ negl(n),

where the first probability is taken over uniform choice of k ∈ {0, 1}n and
m ∈ S, the randomness of A, and the randomness of Enc, and the second
probability is taken over uniform choice of m ∈ S and the randomness of A′.

Private-Key Encryption 59

PROOF (Sketch) The fact that (Enc,Dec) is EAV-secure means that, for
any S ⊆ {0, 1}`, no ppt adversary can distinguish between Enck(m) (for uni-
form m ∈ S) and Enck(1

`). Consider now the probability that A successfully
computes f(m) given Enck(m). We claim that A should successfully compute
f(m) given Enck(1

`) with almost the same probability; otherwise, A could
be used to distinguish between Enck(m) and Enck(1

`). The distinguisher is
easily constructed: choose uniform m ∈ S, and output m0 = m, m1 = 1`.
When given a ciphertext c that is an encryption of either m0 or m1, invoke
A(1n, c) and output 0 if and only if A outputs f(m). If A outputs f(m) when
given an encryption of m with probability that is significantly different from
the probability that it outputs f(m) when given an encryption of 1`, then the
described distinguisher violates Definition 3.9.

The above suggests the following algorithm A′ that does not receive c =
Enck(m), yet computes f(m) almost as well as A does: A′(1n) chooses a
uniform key k ∈ {0, 1}n, invokes A on c← Enck(1

`), and outputs whatever A
does. By the above, we have that A outputs f(m) when run as a subroutine
by A′ with almost the same probability as when it receives Enck(m). Thus,
A′ fulfills the property required by the claim.

Semantic security. The full definition of semantic security guarantees con-
siderably more than the property considered in Theorem 3.11. The definition
allows the length of the plaintext to depend on the security parameter, and
allows for essentially arbitrary distributions over plaintexts. (Actually, we
allow only efficiently sampleable distributions. This means that there is some
probabilistic polynomial-time algorithm Samp such that Samp(1n) outputs
messages according to the distribution.) The definition also takes into ac-
count arbitrary “external” information h(m) about the plaintext that may be
leaked to the adversary through other means (e.g., because the same message
m is used for some other purpose as well).

DEFINITION 3.12 A private-key encryption scheme (Enc,Dec) is seman-
tically secure in the presence of an eavesdropper if for every ppt algorithm A
there exists a ppt algorithm A′ such that for any ppt algorithm Samp and
polynomial-time computable functions f and h, the following is negligible:

∣∣∣Pr[A(1n,Enck(m), h(m)) = f(m)]− Pr[A′(1n, |m|, h(m)) = f(m)]
∣∣∣ ,

where the first probability is taken over uniform k ∈ {0, 1}n, m output by
Samp(1n), the randomness of A, and the randomness of Enc, and the second
probability is taken over m output by Samp(1n) and the randomness of A′.

The adversary A is given the ciphertext Enck(m) as well as the external
information h(m), and attempts to guess the value of f(m). Algorithm A′
also attempts to guess the value of f(m), but is given only h(m) and the

60 Introduction to Modern Cryptography

length of m. The security requirement states that A’s probability of correctly
guessing f(m) is about the same as that ofA′. Intuitively, then, the ciphertext
Enck(m) does not reveal any additional information about the value of f(m).

Definition 3.12 constitutes a very strong and convincing formulation of the
security guarantees that should be provided by an encryption scheme. How-
ever, it is easier to work with the definition of indistinguishability (Defini-
tion 3.8). Fortunately, the definitions are equivalent :

THEOREM 3.13 A private-key encryption scheme has indistinguishable
encryptions in the presence of an eavesdropper if and only if it is semantically
secure in the presence of an eavesdropper.

Looking ahead, a similar equivalence between semantic security and indis-
tinguishability is known for all the definitions that we present in this chapter
as well as those in Chapter 11. We can therefore use indistinguishability as
our working definition, while being assured that the guarantees achieved are
those of semantic security.

3.3 Constructing Secure Encryption Schemes

Having defined what it means for an encryption scheme to be secure, the
reader may expect us to turn immediately to constructions of secure encryp-
tion schemes. Before doing so, however, we need to introduce the notions
of pseudorandom generators (PRGs) and stream ciphers, important building
blocks for private-key encryption. These, in turn, will lead to a discussion of
pseudorandomness, which plays a fundamental role in cryptography in general
and private-key encryption in particular.

3.3.1 Pseudorandom Generators and Stream Ciphers

A pseudorandom generator G is an efficient, deterministic algorithm for
transforming a short, uniform string called the seed into a longer, “uniform-
looking” (or “pseudorandom”) output string. Stated differently, a pseudoran-
dom generator uses a small amount of true randomness in order to generate
a large amount of pseudorandomness. This is useful whenever a large num-
ber of random(-looking) bits are needed, since generating true random bits
is difficult and slow. (See the discussion at the beginning of Chapter 2.) In-
deed, pseudorandom generators have been studied since at least the 1940s
when they were proposed for running statistical simulations. In that context,
researchers proposed various statistical tests that a pseudorandom generator
should pass in order to be considered “good.” As a simple example, the first

Private-Key Encryption 61

bit of the output of a pseudorandom generator should be equal to 1 with prob-
ability very close to 1/2 (where the probability is taken over uniform choice of
the seed), since the first bit of a uniform string is equal to 1 with probability
exactly 1/2. In fact, the parity of any fixed subset of the output bits should
also be 1 with probability very close to 1/2. More complex statistical tests
can also be considered.

This historical approach to determining the quality of some candidate pseu-
dorandom generator is ad hoc, and it is not clear when passing some set of
statistical tests is sufficient to guarantee the soundness of using a candidate
pseudorandom generator for some application. (In particular, there may be
another statistical test that does successfully distinguish the output of the
generator from true random bits.) The historical approach is even more prob-
lematic when using pseudorandom generators for cryptographic applications;
in that setting, security may be compromised if an attacker is able to distin-
guish the output of a generator from uniform, and we do not know in advance
what strategy an attacker might use.

The above considerations motivated a cryptographic approach to defining
pseudorandom generators in the 1980s. The basic realization was that a good
pseudorandom generator should pass all (efficient) statistical tests. That is,
for any efficient statistical test (or distinguisher) D, the probability that D
returns 1 when given the output of the pseudorandom generator should be
close to the probability that D returns 1 when given a uniform string of the
same length. Informally, then, the output of a pseudorandom generator should
“look like” a uniform string to any efficient observer.

(We stress that, formally speaking, it does not make sense to say that any
fixed string is “pseudorandom,” in the same way that it is meaningless to refer
to any fixed string as “random.” Rather, pseudorandomness is a property of
a distribution on strings. Nevertheless, we sometimes informally call a string
sampled according to the uniform distribution a “uniform string,” and a string
output by a pseudorandom generator a “pseudorandom string.”)

Another perspective is obtained by defining what it means for a distribu-
tion to be pseudorandom. Let Dist be a distribution on `-bit strings. (This
means that Dist assigns some probability to every string in {0, 1}`; sampling
from Dist means that we choose an `-bit string according to this probability
distribution.) Informally, Dist is pseudorandom if the experiment in which a
string is sampled from Dist is indistinguishable from the experiment in which
a uniform string of length ` is sampled. (Strictly speaking, since we are in an
asymptotic setting we need to speak of the pseudorandomness of a sequence
of distributions Dist = {Distn}, where distribution Distn is used for security
parameter n. We ignore this point in our current discussion.) More precisely,
it should be infeasible for any polynomial-time algorithm to tell (better than
guessing) whether it is given a string sampled according to Dist, or whether
it is given a uniform `-bit string. This means that a pseudorandom string
is just as good as a uniform string, as long as we consider only polynomial-
time observers. Just as indistinguishability is a computational relaxation of

62 Introduction to Modern Cryptography

perfect secrecy, pseudorandomness is a computational relaxation of true ran-
domness. (We will generalize this perspective when we discuss the notion of
indistinguishability in Chapter 7.)

Now let G : {0, 1}n → {0, 1}` be a function, and define Dist to be the
distribution on `-bit strings obtained by choosing a uniform s ∈ {0, 1}n and
outputting G(s). Then G is a pseudorandom generator if and only if the
distribution Dist is pseudorandom.

The formal definition. As discussed above, G is a pseudorandom generator
if no efficient distinguisher can detect whether it is given a string output by G
or a string chosen uniformly at random. As in Definition 3.9, this is formalized
by requiring that every efficient algorithm outputs 1 with almost the same
probability when given G(s) (for uniform seed s) or a uniform string. (For an
equivalent definition analogous to Definition 3.8, see Exercise 3.5.) We obtain
a definition in the asymptotic setting by letting the security parameter n
determine the length of the seed. We then insist that G be computable by
an efficient algorithm. As a technicality, we also require that G’s output be
longer than its input; otherwise, G is not very useful or interesting.

DEFINITION 3.14 Let ` be a polynomial and let G be a deterministic
polynomial-time algorithm such that for any n and any input s ∈ {0, 1}n,
the result G(s) is a string of length `(n). We say that G is a pseudorandom
generator if the following conditions hold:

1. (Expansion:) For every n it holds that `(n) > n.

2. (Pseudorandomness:) For any ppt algorithm D, there is a negligible
function negl such that

∣∣Pr[D(G(s)) = 1]− Pr[D(r) = 1]
∣∣ ≤ negl(n),

where the first probability is taken over uniform choice of s ∈ {0, 1}n and
the randomness of D, and the second probability is taken over uniform
choice of r ∈ {0, 1}`(n) and the randomness of D.

We call ` the expansion factor of G.

We give an example of an insecure pseudorandom generator to gain famil-
iarity with the definition.

Example 3.15
Define G(s) to output s followed by ⊕n

i=1si, so the expansion factor of G is
`(n) = n + 1. The output of G can easily be distinguished from uniform.
Consider the following efficient distinguisher D: on input a string w, output 1
if and only if the final bit of w is equal to the XOR of all the preceding
bits of w. Since this property holds for all strings output by G, we have

Private-Key Encryption 63

Pr[D(G(s)) = 1] = 1. On the other hand, if w is uniform, the final bit of w
is uniform and so Pr[D(w) = 1] = 1

2 . The quantity | 12 − 1| is constant, not
negligible, and so this G is not a pseudorandom generator. (Note that D is
not always “correct,” since it sometimes outputs 1 even when given a uniform
string. This does not change the fact that D is a good distinguisher.) ♦

Discussion. The distribution on the output of a pseudorandom generator G
is far from uniform. To see this, consider the case that `(n) = 2n and so G
doubles the length of its input. Under the uniform distribution on {0, 1}2n,
each of the 22n possible strings is chosen with probability exactly 2−2n. In
contrast, consider the distribution of the output of G (when G is run on a
uniform seed). When G receives an input of length n, the number of different
strings in the range of G is at most 2n. The fraction of strings of length 2n
that are in the range of G is thus at most 2n/22n = 2−n, and we see that the
vast majority of strings of length 2n do not occur as outputs of G.

This in particular means that it is trivial to distinguish between a random
string and a pseudorandom string given an unlimited amount of time. Let
G be as above and consider the exponential-time distinguisher D that works
as follows: D(w) outputs 1 if and only if there exists an s ∈ {0, 1}n such
that G(s) = w. (This computation is carried out in exponential time by
exhaustively computing G(s) for every s ∈ {0, 1}n. Recall that by Kerckhoffs’
principle, the specification of G is known to D.) Now, if w were output by G,
then D outputs 1 with probability 1. In contrast, if w is uniformly distributed
in {0, 1}2n, then the probability that there exists an s with G(s) = w is at
most 2−n, and so D outputs 1 in this case with probability at most 2−n. So

∣∣Pr[D(r) = 1]− Pr[D(G(s)) = 1]
∣∣ ≥ 1− 2−n,

which is large. This is just another example of a brute-force attack, and does
not contradict the pseudorandomness of G since the attack is not efficient.

The seed and its length. The seed for a pseudorandom generator is anal-
ogous to the cryptographic key used by an encryption scheme, and the seed
must be chosen uniformly and be kept secret from any adversary. Another
important point, evident from the above discussion of brute-force attacks, is
that s must be long enough so that it is not feasible to enumerate all possible
seeds. In an asymptotic sense this is taken care of by setting the length of
the seed equal to the security parameter, so that exhaustive search over all
possible seeds requires exponential time. In practice, the seed must be long
enough so that it is impossible to try all possible seeds within some specified
time bound.

On the existence of pseudorandom generators. Do pseudorandom gen-
erators exist? They certainly seem difficult to construct, and one may rightly
ask whether any algorithm satisfying Definition 3.14 exists. Although we do
not know how to unconditionally prove the existence of pseudorandom gen-
erators, we have strong reasons to believe they exist. For one, they can be

64 Introduction to Modern Cryptography

constructed under the rather weak assumption that one-way functions exist
(which is true if certain problems like factoring large numbers are hard); this
will be discussed in detail in Chapter 7. We also have several practical con-
structions of candidate pseudorandom generators called stream ciphers for
which no efficient distinguishers are known. (Later, we will introduce even
stronger primitives called block ciphers.) We give a high-level overview of
stream ciphers next, and discuss concrete stream ciphers in Chapter 6.

Stream Ciphers

Our definition of a pseudorandom generator is limited in two ways: the
expansion factor is fixed, and the generator produces its entire output in “one
shot.” Stream ciphers, used in practice to instantiate pseudorandom genera-
tors, work somewhat differently. The pseudorandom output bits of a stream
cipher are produced gradually and on demand, so that an application can re-
quest exactly as many pseudorandom bits as needed. This improves efficiency
(since an application can request fewer bits, if sufficient) and flexibility (since
there is no upper bound on the number of bits that can be requested).

Formally, we view a stream cipher2 as a pair of deterministic algorithms
(Init, GetBits) where:

• Init takes as input a seed s and an optional initialization vector IV , and
outputs an initial state st0.

• GetBits takes as input state information sti, and outputs a bit y and
updated state sti+1. (In practice, y is a block of several bits; we treat y
as a single bit here for generality and simplicity.)

Given a stream cipher and any desired expansion factor `, we can define
an algorithm G` mapping inputs of length n to outputs of length `(n). The
algorithm simply runs Init, and then repeatedly runs GetBits a total of ` times.

ALGORITHM 3.16
Constructing G` from (Init,GetBits)

Input: Seed s and optional initialization vector IV
Output: y1, . . . , y`

st0 := Init(s, IV)
for i = 1 to `:

(yi, sti) := GetBits(sti−1)
return y1, . . . , y`

2The terminology here is not completely standard, and beware that “stream cipher” is used
by different people in different (but related) ways. For example, some use it to refer to G`

(see below), while some use it to refer to Construction 3.17 when instantiated with G`.

Private-Key Encryption 65

A stream cipher is secure in the basic sense if it takes no IV and for any
polynomial ` with `(n) > n, the function G` constructed above is a pseudo-
random generator with expansion factor `. We briefly discuss one possible
security notion for stream ciphers that use an IV in Section 3.6.1.

3.3.2 Proofs by Reduction

If we wish to prove that a given construction is computationally secure, then
we must rely on unproven assumptions3 (unless the scheme is information-
theoretically secure). Our strategy will be to assume that some mathematical
problem is hard, or that some low-level cryptographic primitive is secure, and
then to prove that a given construction based on this problem/primitive is
secure under this assumption. In Section 1.4.2 we have already explained
in great detail why this approach is preferable so we do not repeat those
arguments here.

The proof that a cryptographic construction is secure as long as some under-
lying problem is hard generally proceeds by presenting an explicit reduction
showing how to transform any efficient adversary A that succeeds in “break-
ing” the construction into an efficient algorithm A′ that solves the problem
that was assumed to be hard. Since this is so important, we walk through
a high-level outline of the steps of such a proof in detail. (We will see nu-
merous concrete examples through the book, beginning with the proof of
Theorem 3.18.) We begin with an assumption that some problem X cannot
be solved (in some precisely defined sense) by any polynomial-time algorithm,
except with negligible probability. We want to prove that some cryptographic
construction Π is secure (again, in some sense that is precisely defined). A
proof proceeds via the following steps (see also Figure 3.1):

1. Fix some efficient (i.e., probabilistic polynomial-time) adversary A at-
tacking Π. Denote this adversary’s success probability by ε(n).

2. Construct an efficient algorithm A′, called the “reduction,” that at-
tempts to solve problem X using adversary A as a subroutine. An im-
portant point here is that A′ knows nothing about how A works; the
only thing A′ knows is that A is expecting to attack Π. So, given some
input instance x of problem X, our algorithm A′ will simulate for A an
instance of Π such that:

(a) As far as A can tell, it is interacting with Π. That is, the view of A
when run as a subroutine by A′ should be distributed identically to
(or at least close to) the view of A when it interacts with Π itself.

(b) If A succeeds in “breaking” the instance of Π that is being sim-
ulated by A′, this should allow A′ to solve the instance x it was
given, at least with inverse polynomial probability 1/p(n).

3In particular, most of cryptography requires the unproven assumption that P 6= NP.

66 Introduction to Modern Cryptography

 Instance of

scheme

Reduction

�Break�

A

Instance of

 problem

Solution to

X

A
0

x

x

FIGURE 3.1: A high-level overview of a security proof by reduction.

3. Taken together, 2(a) and 2(b) imply that A′ solves X with probability
ε(n)/p(n). If ε(n) is not negligible, then neither is ε(n)/p(n). Moreover,
if A is efficient then we obtain an efficient algorithm A′ solving X with
non-negligible probability, contradicting the initial assumption.

4. Given our assumption regarding X, we conclude that no efficient ad-
versary A can succeed in breaking Π with non-negligible probability.
Stated differently, Π is computationally secure.

In the following section we will illustrate exactly the above idea: we will
show how to use any pseudorandom generator G to construct an encryption
scheme; we prove the encryption scheme secure by showing that any attacker
who can “break” the encryption scheme can be used to distinguish the output
of G from a uniform string. Under the assumption that G is a pseudorandom
generator, then, the encryption scheme is secure.

3.3.3 A Secure Fixed-Length Encryption Scheme

A pseudorandom generator provides a natural way to construct a secure,
fixed-length encryption scheme with a key shorter than the message. Recall
that in the one-time pad (see Section 2.2), encryption is done by XORing a
random pad with the message. The insight is that we can use a pseudorandom
pad instead. Rather than sharing this long, pseudorandom pad, however, the
sender and receiver can instead share a seed which is used to generate that
pad when needed (see Figure 3.2); this seed will be shorter than the pad
and hence shorter than the message. As for security, the intuition is that
a pseudorandom string “looks random” to any polynomial-time adversary
and so a computationally bounded eavesdropper cannot distinguish between
a message encrypted using the one-time pad or a message encrypted using
this “pseudo-”one-time pad encryption scheme.

Private-Key Encryption 67

Ciphertext

pad

XORPlaintext

Pseudorandom
generator

FIGURE 3.2: Encryption with a pseudorandom generator.

The encryption scheme. Fix some message length ` and let G be a pseu-
dorandom generator with expansion factor ` (that is, |G(s)| = `(|s|)). Recall
that an encryption scheme is defined by three algorithms: a key-generation
algorithm Gen, an encryption algorithm Enc, and a decryption algorithm Dec.
The key-generation algorithm is the trivial one: Gen(1n) simply outputs a
uniform key k of length n. Encryption works by applying G to the key (which
serves as a seed) in order to obtain a pad that is then XORed with the plain-
text. Decryption applies G to the key and XORs the resulting pad with the
ciphertext to recover the message. The scheme is described formally in Con-
struction 3.17. In Section 3.6.1, we describe how stream ciphers are used to
implement a variant of this scheme in practice.

CONSTRUCTION 3.17

Let G be a pseudorandom generator with expansion factor `. Define a
private-key encryption scheme for messages of length ` as follows:

• Gen: on input 1n, choose uniform k ∈ {0, 1}n and output it as
the key.

• Enc: on input a key k ∈ {0, 1}n and a message m ∈ {0, 1}`(n),
output the ciphertext

c := G(k)⊕m.

• Dec: on input a key k ∈ {0, 1}n and a ciphertext c ∈ {0, 1}`(n),
output the message

m := G(k) ⊕ c.

A private-key encryption scheme based on any pseudorandom generator.

68 Introduction to Modern Cryptography

THEOREM 3.18 If G is a pseudorandom generator, then Construc-
tion 3.17 is a fixed-length private-key encryption scheme that has indistin-
guishable encryptions in the presence of an eavesdropper.

PROOF Let Π denote Construction 3.17. We show that Π satisfies Def-
inition 3.8. Namely, we show that for any probabilistic polynomial-time ad-
versary A there is a negligible function negl such that

Pr
[
PrivKeav

A,Π(n) = 1
]
≤ 1

2
+ negl(n). (3.2)

The intuition is that if Π used a uniform pad in place of the pseudorandom
pad G(k), then the resulting scheme would be identical to the one-time pad
encryption scheme and A would be unable to correctly guess which message
was encrypted with probability any better than 1/2. Thus, if Equation (3.2)
does not hold then A must implicitly be distinguishing the output of G from
a random string. We make this explicit by showing a reduction; namely,
by showing how to use A to construct an efficient distinguisher D, with the
property that D’s ability to distinguish the output of G from a uniform string
is directly related to A’s ability to determine which message was encrypted
by Π. Security of G then implies security of Π.

Let A be an arbitrary ppt adversary. We construct a distinguisher D that
takes a string w as input, and whose goal is to determine whether w was
chosen uniformly (i.e., w is a “random string”) or whether w was generated
by choosing a uniform k and computing w := G(k) (i.e., w is a “pseudorandom
string”). We construct D so that it emulates the eavesdropping experiment
for A, as described below, and observes whether A succeeds or not. If A
succeeds then D guesses that w must be a pseudorandom string, while if A
does not succeed then D guesses that w is a random string. In detail:

Distinguisher D:
D is given as input a string w ∈ {0, 1}`(n). (We assume that n can
be determined from `(n).)

1. Run A(1n) to obtain a pair of messages m0,m1 ∈ {0, 1}`(n).
2. Choose a uniform bit b ∈ {0, 1}. Set c := w ⊕mb.

3. Give c to A and obtain output b′. Output 1 if b′ = b, and
output 0 otherwise.

D clearly runs in polynomial time (assuming A does).

Before analyzing the behavior of D, we define a modified encryption scheme

Π̃ = (G̃en, Ẽnc, D̃ec) that is exactly the one-time pad encryption scheme, ex-
cept that we now incorporate a security parameter that determines the length

of the message to be encrypted. That is, G̃en(1n) outputs a uniform key k of
length `(n), and the encryption of message m ∈ 2`(n) using key k ∈ {0, 1}`(n)

Private-Key Encryption 69

is the ciphertext c := k ⊕m. (Decryption can be performed as usual, but is
inessential to what follows.) Perfect secrecy of the one-time pad implies

Pr
[
PrivKeav

A,Π̃
(n) = 1

]
=

1

2
. (3.3)

To analyze the behavior of D, the main observations are:

1. If w is chosen uniformly from {0, 1}`(n), then the view ofA when run as a
subroutine by D is distributed identically to the view of A in experiment
PrivKeav

A,Π̃
(n). This is because when A is run as a subroutine by D(w) in

this case, A is given a ciphertext c = w⊕mb where w ∈ {0, 1}`(n) is uni-
form. Since D outputs 1 exactly when A succeeds in its eavesdropping
experiment, we therefore have (cf. Equation (3.3))

Prw←{0,1}`(n) [D(w) = 1] = Pr
[
PrivKeav

A,Π̃
(n) = 1

]
=

1

2
. (3.4)

(The subscript on the first probability just makes explicit that w is
chosen uniformly from {0, 1}`(n) there.)

2. If w is instead generated by choosing uniform k ∈ {0, 1}n and then
setting w := G(k), the view of A when run as a subroutine by D is
distributed identically to the view of A in experiment PrivKeav

A,Π(n). This
is because A, when run as a subroutine by D, is now given a ciphertext
c = w ⊕mb where w = G(k) for a uniform k ∈ {0, 1}n. Thus,

Prk←{0,1}n [D(G(k)) = 1] = Pr
[
PrivKeav

A,Π(n) = 1
]
. (3.5)

Since G is a pseudorandom generator (and since D runs in polynomial time),
we know there is a negligible function negl such that

∣∣∣Prw←{0,1}`(n) [D(w) = 1]− Prk←{0,1}n [D(G(k)) = 1]
∣∣∣ ≤ negl(n).

Using Equations (3.4) and (3.5), we thus see that

∣∣∣∣
1

2
− Pr

[
PrivKeav

A,Π(n) = 1
]∣∣∣∣ ≤ negl(n),

which implies Pr
[
PrivKeav

A,Π(n) = 1
]
≤ 1

2 + negl(n). Since A was an arbitrary
ppt adversary, this completes the proof that Π has indistinguishable encryp-
tions in the presence of an eavesdropper.

It is easy to get lost in the details of the proof and wonder whether anything
has been gained as compared to the one-time pad; after all, the one-time pad
also encrypts an `-bit message by XORing it with an `-bit string! The point
of the construction, of course, is that the `-bit string G(k) can be much

70 Introduction to Modern Cryptography

longer than the shared key k. In particular, using the above scheme it is
possible to securely encrypt a 1 Mb file using only a 128-bit key. By relying
on computational secrecy we have thus circumvented the impossibility result
of Theorem 2.10, which states that any perfectly secret encryption scheme
must use a key at least as long as the message.

Reductions—a discussion. We do not prove unconditionally that Con-
struction 3.17 is secure. Rather, we prove that it is secure under the assump-
tion that G is a pseudorandom generator. This approach of reducing the
security of a higher-level construction to a lower-level primitive has a number
of advantages (as discussed in Section 1.4.2). One of these advantages is that,
in general, it is easier to design a lower-level primitive than a higher-level one;
it is also easier, in general, to directly analyze an algorithm G with respect
to a lower-level definition than to analyze a more complex scheme Π with
respect to a higher-level definition. This does not mean that constructing a
pseudorandom generator is “easy,” only that it is easier than constructing an
encryption scheme from scratch. (In the present case the encryption scheme
does nothing except XOR the output of a pseudorandom generator with the
message and so this isn’t really true. However, we will see more complex con-
structions and in those cases the ability to reduce the task to a simpler one is
of great importance.) Another advantage is that once an appropriate G has
been constructed, it can be used as a component of various other schemes.

Concrete security. Although Theorem 3.18 and its proof are in an asymp-
totic setting, we can readily adapt the proof to bound the concrete security
of the encryption scheme in terms of the concrete security of G. Fix some
value of n for the remainder of this discussion, and let Π now denote Con-
struction 3.17 using this value of n. Assume G is (t, ε)-pseudorandom (for the
given value of n), in the sense that for all distinguishers D running in time at
most t we have

∣∣Pr[D(r) = 1]− Pr[D(G(s)) = 1]
∣∣ ≤ ε. (3.6)

(Think of t ≈ 280 and ε ≈ 2−60, though precise values are irrelevant for our
discussion.) We claim that Π is (t− c, ε)-secure for some (small) constant c,
in the sense that for all A running in time at most t− c we have

Pr
[
PrivKeav

A,Π = 1
]
≤ 1

2
+ ε. (3.7)

(Note that the above are now fixed numbers, not functions of n, since we
are not in an asymptotic setting here.) To see this, let A be an arbitrary
adversary running in time at most t − c. Distinguisher D, as constructed in
the proof of Theorem 3.18, has very little overhead besides running A; setting
c appropriately ensures that D runs in time at most t. Our assumption on
the concrete security of G then implies Equation (3.6); proceeding exactly as
in the proof of Theorem 3.18, we obtain Equation (3.7).

Private-Key Encryption 71

3.4 Stronger Security Notions

Until now we have considered a relatively weak definition of security in
which the adversary only passively eavesdrops on a single ciphertext sent
between the honest parties. In this section, we consider two stronger security
notions. Recall that a security definition specifies a security goal and an attack
model. In defining the first new security notion, we modify the security goal;
for the second we strengthen the attack model.

3.4.1 Security for Multiple Encryptions

Definition 3.8 deals with the case where the communicating parties transmit
a single ciphertext that is observed by an eavesdropper. It would be conve-
nient, however, if the communicating parties could send multiple ciphertexts
to each other—all generated using the same key—even if an eavesdropper
might observe all of them. For such applications we need an encryption scheme
secure for the encryption of multiple messages.

We begin with an appropriate definition of security for this setting. As
in the case of Definition 3.8, we first introduce an appropriate experiment
defined for any encryption scheme Π, adversary A, and security parameter n:

The multiple-message eavesdropping experiment PrivKmult
A,Π(n):

1. The adversary A is given input 1n, and outputs a pair of
equal-length lists of messages ~M0 = (m0,1, . . . ,m0,t) and ~M1 =
(m1,1, . . . ,m1,t), with |m0,i| = |m1,i| for all i.

2. A key k is generated by running Gen(1n), and a uniform bit
b ∈ {0, 1} is chosen. For all i, the ciphertext ci ← Enck(mb,i)

is computed and the list ~C = (c1, . . . , ct) is given to A.
3. A outputs a bit b′.

4. The output of the experiment is defined to be 1 if b′ = b, and
0 otherwise.

The definition of security is the same as before, except that it now refers to
the above experiment.

DEFINITION 3.19 A private-key encryption scheme Π = (Gen,Enc,Dec)
has indistinguishable multiple encryptions in the presence of an eavesdropper if
for all probabilistic polynomial-time adversaries A there is a negligible function
negl such that

Pr
[
PrivKmult

A,Π(n) = 1
]
≤ 1

2
+ negl(n),

where the probability is taken over the randomness used by A and the random-
ness used in the experiment.

72 Introduction to Modern Cryptography

Any scheme that has indistinguishable multiple encryptions in the pres-
ence of an eavesdropper clearly also satisfies Definition 3.8, since experiment
PrivKeav corresponds to the special case of PrivKmult where the adversary out-
puts two lists containing only a single message each. In fact, our new definition
is strictly stronger than Definition 3.8, as the following shows.

PROPOSITION 3.20 There is a private-key encryption scheme that has
indistinguishable encryptions in the presence of an eavesdropper, but not in-
distinguishable multiple encryptions in the presence of an eavesdropper.

PROOF We do not have to look far to find an example of an encryption
scheme satisfying the proposition. The one-time pad is perfectly secret, and so
also has indistinguishable encryptions in the presence of an eavesdropper. We
show that it is not secure in the sense of Definition 3.19. (We have discussed
this attack in Chapter 2 already; here, we merely analyze the attack with
respect to Definition 3.19.)

Concretely, consider the following adversary A attacking the scheme (in

the sense defined by experiment PrivKmult): A outputs ~M0 = (0`, 0`) and
~M1 = (0`, 1`). (The first contains the same plaintext twice, while the second

contains two different messages.) Let ~C = (c1, c2) be the list of ciphertexts
thatA receives. If c1 = c2, then A outputs b′ = 0; otherwise, A outputs b′ = 1.

We now analyze the probability that b′ = b. The crucial point is that the
one-time pad is deterministic, so encrypting the same message twice (using
the same key) yields the same ciphertext. Thus, if b = 0 then we must have
c1 = c2 and A outputs 0 in this case. On the other hand, if b = 1 then a
different message is encrypted each time; hence c1 6= c2 and A outputs 1.
We conclude that A correctly outputs b′ = b with probability 1, and so the
encryption scheme is not secure with respect to Definition 3.19.

Necessity of probabilistic encryption. The above might appear to show
that Definition 3.19 is impossible to achieve using any encryption scheme.
But in fact this is true only if the encryption scheme is deterministic and
so encrypting the same message multiple times (using the same key) always
yields the same result. This is important enough to state as a theorem.

THEOREM 3.21 If Π is a (stateless4) encryption scheme in which Enc
is a deterministic function of the key and the message, then Π cannot have
indistinguishable multiple encryptions in the presence of an eavesdropper.

This should not be taken to mean that Definition 3.19 is too strong. Indeed,

4We will see in Section 3.6.1 that if the encryption scheme is stateful, then it is possible to
securely encrypt multiple messages even if encryption is deterministic.

Private-Key Encryption 73

leaking to an eavesdropper the fact that two encrypted messages are the same
can be a significant security breach. (Consider, e.g., a scenario in which a
student encrypts a series of true/false answers!)

To construct a scheme secure for encrypting multiple messages, we must
design a scheme in which encryption is randomized so that when the same
message is encrypted multiple times, different ciphertexts can be produced.
This may seem impossible since decryption must always be able to recover
the message. However, we will soon see how to achieve it.

3.4.2 Chosen-Plaintext Attacks and CPA-Security

Chosen-plaintext attacks capture the ability of an adversary to exercise
(partial) control over what the honest parties encrypt. We imagine a scenario
in which two honest parties share a key k, and the attacker can influence
these parties to encrypt messages m1,m2, . . . (using k) and send the resulting
ciphertexts over a channel that the attacker can observe. At some later point
in time, the attacker observes a ciphertext corresponding to some unknown
message m encrypted using the same key k; let us even assume that the
attacker knows that m is one of two possibilities m0,m1. Security against
chosen-plaintext attacks means that even in this case the attacker cannot
tell which of these two messages was encrypted with probability significantly
better than random guessing. (For now we revert back to the case where
the eavesdropper is given only a single encryption of an unknown message.
Shortly, we will return to consideration of the multiple-message case.)

Chosen-plaintext attacks in the real world. Are chosen-plaintext at-
tacks a realistic concern? For starters, note that chosen-plaintext attacks also
encompass known-plaintext attacks—in which the attacker knows what mes-
sages are being encrypted, even if it does not get to choose them—as a special
case. Moreover, there are several real-world scenarios in which an adversary
might have significant influence over what messages get encrypted. A simple
example is given by an attacker typing on a terminal, which in turn encrypts
and sends everything the adversary types using a key shared with a remote
server (and unknown to the attacker). Here the attacker exactly controls what
gets encrypted, but the encryption scheme should remain secure when it is
used—with the same key— to encrypt data for another user.

Interestingly, chosen-plaintext attacks have also been used successfully as
part of historical efforts to break military encryption schemes. For example,
during World War II the British placed mines at certain locations, knowing
that the Germans—when finding those mines—would encrypt the locations
and send them back to headquarters. These encrypted messages were used
by cryptanalysts at Bletchley Park to break the German encryption scheme.

Another example is given by the famous story involving the Battle of Mid-
way. In May 1942, US Navy cryptanalysts intercepted an encrypted message
from the Japanese which they were able to partially decode. The result in-

74 Introduction to Modern Cryptography

dicated that the Japanese were planning an attack on AF, where AF was a
ciphertext fragment that the US was unable to decode. For other reasons,
the US believed that Midway Island was the target. Unfortunately, their at-
tempts to convince Washington planners that this was the case were futile;
the general belief was that Midway could not possibly be the target. The
Navy cryptanalysts devised the following plan: They instructed US forces at
Midway to send a fake message that their freshwater supplies were low. The
Japanese intercepted this message and immediately reported to their superi-
ors that “AF is low on water.” The Navy cryptanalysts now had their proof
that AF corresponded to Midway, and the US dispatched three aircraft carriers
to that location. The result was that Midway was saved, and the Japanese
incurred significant losses. This battle was a turning point in the war between
the US and Japan in the Pacific.

The Navy cryptanalysts here carried out a chosen-plaintext attack, as they
were able to influence the Japanese (albeit in a roundabout way) to encrypt
the word “Midway.” If the Japanese encryption scheme had been secure
against chosen-plaintext attacks, this strategy by the US cryptanalysts would
not have worked (and history may have turned out very differently)!

CPA-security. In the formal definition we model chosen-plaintext attacks
by giving the adversary A access to an encryption oracle, viewed as a “black
box” that encrypts messages of A’s choice using a key k that is unknown
to A. That is, we imagine A has access to an “oracle” Enck(·); when A
queries this oracle by providing it with a message m as input, the oracle
returns a ciphertext c← Enck(m) as the reply. (When Enc is randomized, the
oracle uses fresh randomness each time it answers a query.) The adversary is
allowed to interact with the encryption oracle adaptively, as many times as it
likes.

Consider the following experiment defined for any encryption scheme Π =
(Gen,Enc,Dec), adversary A, and value n for the security parameter:

The CPA indistinguishability experiment PrivKcpa
A,Π(n):

1. A key k is generated by running Gen(1n).

2. The adversary A is given input 1n and oracle access to Enck(·),
and outputs a pair of messages m0,m1 of the same length.

3. A uniform bit b ∈ {0, 1} is chosen, and then a ciphertext
c← Enck(mb) is computed and given to A.

4. The adversary A continues to have oracle access to Enck(·),
and outputs a bit b′.

5. The output of the experiment is defined to be 1 if b′ = b, and
0 otherwise. In the former case, we say that A succeeds.

Private-Key Encryption 75

DEFINITION 3.22 A private-key encryption scheme Π = (Gen,Enc,Dec)
has indistinguishable encryptions under a chosen-plaintext attack, or is CPA-
secure, if for all probabilistic polynomial-time adversaries A there is a negli-
gible function negl such that

Pr
[
PrivKcpa

A,Π(n) = 1
]
≤ 1

2
+ negl(n),

where the probability is taken over the randomness used by A, as well as the
randomness used in the experiment.

CPA-Security for Multiple Encryptions

Definition 3.22 can be extended to the case of multiple encryptions in the
same way that Definition 3.8 is extended to give Definition 3.19, i.e., by using
lists of plaintexts. Here, we take a different approach that is somewhat sim-
pler and has the advantage of modeling attackers that can adaptively choose
plaintexts to be encrypted, even after observing previous ciphertexts. In the
present definition, we give the attacker access to a “left-or-right” oracle LRk,b

that, on input a pair of equal-length messages m0,m1, computes the cipher-
text c← Enck(mb) and returns c. That is, if b = 0 then the adversary receives
an encryption of the “left” plaintext, and if b = 1 then it receives an encryp-
tion of the “right” plaintext. Here, b is a random bit chosen at the beginning
of the experiment, and as in previous definitions the goal of the attacker is
to guess b. This generalizes the previous definition of multiple-message secu-
rity (Definition 3.19) because instead of outputting the lists (m0,1, . . . ,m0,t)
and (m1,1, . . . ,m1,t), one of whose messages will be encrypted, the attacker
can now sequentially query LRk,b(m0,1,m1,1), . . . , LRk,b(m0,t,m1,t). This also
encompasses the attacker’s access to an encryption oracle, since the attacker
can simply query LRk,b(m,m) to obtain Enck(m).

We now formally define this experiment, called the LR-oracle experiment.
Let Π be an encryption scheme, A an adversary, and n the security parameter:

The LR-oracle experiment PrivKLR-cpa
A,Π (n):

1. A key k is generated by running Gen(1n).

2. A uniform bit b ∈ {0, 1} is chosen.

3. The adversary A is given input 1n and oracle access to LRk,b(·, ·),
as defined above.

4. The adversary A outputs a bit b′.

5. The output of the experiment is defined to be 1 if b′ = b, and
0 otherwise. In the former case, we say that A succeeds.

76 Introduction to Modern Cryptography

DEFINITION 3.23 Private-key encryption scheme Π has indistinguish-
able multiple encryptions under a chosen-plaintext attack, or is CPA-secure for
multiple encryptions, if for all probabilistic polynomial-time adversaries A there
is a negligible function negl such that

Pr
[
PrivKLR-cpa

A,Π (n) = 1
]
≤ 1

2
+ negl(n),

where the probability is taken over the randomness used by A and the random-
ness used in the experiment.

Our earlier discussion shows that CPA-security for multiple encryptions is at
least as strong as all our previous definitions. In particular, if a private-key en-
cryption scheme is CPA-secure for multiple encryptions then it is clearly CPA-
secure as well. Importantly, the converse also holds; that is, CPA-security
implies CPA-security for multiple encryptions. (This stands in contrast to
the case of eavesdropping adversaries; see Proposition 3.20.) We state the fol-
lowing theorem here without proof; a similar result in the public-key setting
is proved in Section 11.2.2.

THEOREM 3.24 Any private-key encryption scheme that is CPA-secure
is also CPA-secure for multiple encryptions.

This is a significant technical advantage of CPA-security: It suffices to prove
that a scheme is CPA-secure (for a single encryption), and we then obtain “for
free” that it is CPA-secure for multiple encryptions as well.

Security against chosen-plaintext attacks is nowadays the minimal notion of
security an encryption scheme should satisfy, though it is becoming more com-
mon to require even the stronger security properties discussed in Section 4.5.

Fixed-length vs. arbitrary-length messages. Another advantage of
working with the definition of CPA-security is that it allows us to treat fixed-
length encryption schemes without loss of generality. In particular, given any
CPA-secure fixed-length encryption scheme Π = (Gen,Enc,Dec), it is possi-
ble to construct a CPA-secure encryption scheme Π′ = (Gen′,Enc′,Dec′) for
arbitrary-length messages quite easily. For simplicity, say Π encrypts mes-
sages that are 1-bit long (though everything we say extends in the natural
way regardless of the message length supported by Π). Leave Gen′ the same
as Gen. Define Enc′k for any message m (having some arbitrary length `) as
Enc′k(m) = Enck(m1), . . . ,Enck(m`), where mi denotes the ith bit of m. De-
cryption is done in the natural way. Π′ is CPA-secure if Π is; a proof follows
from Theorem 3.24.

There are more efficient ways to encrypt messages of arbitrary length than
by adapting a fixed-length encryption scheme in the above manner. We ex-
plore this further in Section 3.6.

	Cover
	Series Page
	Contents
	Preface
	Part I: Introduction and Classical Cryptography
	Chapter 1: Introduction
	Chapter 2: Perfectly Secret Encryption
	Part II: Private-Key (Symmetric) Cryptography
	Chapter 3: Private-Key Encryption
	Chapter 4: Message Authentication Codes
	Chapter 5: Hash Functions and Applications
	Chapter 6: Practical Constructions of Symmetric-Key Primitives
	Chapter 7: Theoretical Constructions of Symmetric-Key Primitives
	Part III: Public-Key (Asymmetric) Cryptography
	Chapter 8: Number Theory and Cryptographic Hardness Assumptions
	Chapter 9: Algorithms for Factoring and Computing Discrete Logarithms
	Chapter 10: Key Management and the Public-Key Revolution
	Chapter 11: Public-Key Encryption
	Chapter 12: Digital Signature Schemes
	Chapter 13: Advanced Topics in Public-Key Encryption
	Index of Common Notation
	Appendix A: Mathematical Background
	Appendix B: Basic Algorithmic Number Theory
	References
	Back Cover

